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Abstract 

Oncolytic virotherapy is a cancer treatment that uses viruses to selectively infect and destroy cancer cells while leaving healthy 

cells unharmed. These viruses, known as oncolytic viruses, replicate within tumor cells, causing them to lyse (burst) and 

release new viral particles that can infect surrounding cancer cells. This process also releases tumor antigens, which can 

trigger an immune response against the cancer. The dynamics of Oncolytic virotherapy are highly nonlinear. Bifurcation 

analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be 

considered, and multiple objectives must be met simultaneously.  Bifurcation analysis and multiobjective nonlinear model 

predictive control (MNLMPC) calculations are performed on three oncolytic dynamic models. The MATLAB program 

MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization 

language PYOMO in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON.The bifurcation 

analysis revealed the existence of a Hopf bifurcation point in one of the models and branch points in all the three models. The 

Hopf bifurcation point was eliminated using an activation factor that involves the tanh function.  The branch points (which 

cause multiple steady-state solutions from a singular point) are very beneficial because they enable the Multiobjective 

nonlinear model predictive control calculations to converge to the Utopia point (the best possible solution) in the models. It 

is proved (with computational validation) that the branch points were caused because of the existence of two distinct separable 

functions in one of the equations in each dynamic model. A theorem was developed to demonstrate this fact for any dynamic 

model. 
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Introduction 

Mullen et al (2002) [1] describe the mechanism of viral oncolysis, while 

Chiocca (2002) [2] present several oncolytic viruses, and Aghi et al 

(2005) [3] discuss the various oncolytic viral therapies. Novozhilov et al 

(2006) [4] mathematically modeled tumor therapy with oncolytic viruses. 

Kelly, and Russell (2007) [5] present the history of oncolytic viruses from 

genesis to genetic engineering. Alonso et al (2007) [6] showed that the 

combination of the oncolytic adenovirus ICOVIR-5 with chemotherapy 

provides an enhanced anti-glioma effect. Zurakowski, and Wodarz (2007) 

[7], discuss various model-driven approaches for in vitro combination 

therapy using ONYX-015 replicating oncolytic adenovirus. Wong et al 

(2010) [8] present strategies for overcoming the obstacles in using 

oncolytic viruses for cancer therapy. Ottolino et al (2010) [9] provide 

intelligent designs combining therapy with oncolytic viruses. Komarova 

and Wodarz (2010) [10] present ODE models for oncolytic virus 

dynamics. Eager and J. Nemunaitis (2011) [11] researched the various 

clinical development directions in oncolytic viral therapy. Agarwal and 

Bhadauria (2011[12]) modelled and analyzed tumor therapy with 

oncolytic virus. Bagheri et al (2011) [13] provide a dynamical systems 

model for combinatorial cancer therapy that enhances oncolytic 

adenovirus efficacy by MEK-inhibition. Tian (2011) [14] shows the 

replicability of oncolytic virus, defining conditions in tumor virotherapy. 

Donnelly et al (2012) [15] present the recent clinical experiences with 

oncolytic viruses. Russell et al (2012) [16] provide a discussion of 

oncolytic virotherapy. Zhou et al (2013) [17] present the clinical research 

progress for oncolytic adenovirus targeting cancer therapy. Patel and 

Kratzke (2013) [18] discuss the first wave of translational clinical trials 

in oncolytic virus therapy for cancer.  Wang et al (2013) [19] show that 

the lytic cycle is a defining process in oncolytic virotherapy. Kim et al 

(2015) [20] discuss the quantitative impact of immunomodulation versus 

oncolysis with a cytokine-expressing virus therapeutic. Si and Zhang 

(2015) [21] discuss the control exponential growth of tumor cells with the 

slow spread of oncolytic virus. Chen and Su (2016) [22] provide an 

improved model of tumor therapy with oncolytic virus. Simpson et al 

(2016) [23] discussed the recent advances in cancer immunotherapy via 

combining oncolytic virotherapy with chemotherapy. Su et al (2016) [24] 

developed an optimal control model of tumor treatment with oncolytic 

virus and MEK Inhibitor.  Malinzi et al (2018) [25] developed a 

mathematical and optimal control analysis on the enhancement of 

chemotherapy using oncolytic virotherapy. Adi-Kusumo et al (2020) [26] 

showed the existence of a Hopf Bifurcation on a cancer therapy model by 

oncolytic virus involving the malignancy effect and therapeutic efficacy. 

This work aims to perform bifurcation analysis and multiobjective 
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nonlinear control (MNLMPC) studies in three oncolytic virus models, 

which are discussed in Adi-Kusumo et al (2020) [26] (model 1) Su et al 

(2016) [24] (model 2), and Malinzi et al (2018) [25] (model 3). The paper 

is organized as follows. First, the model equations are presented, followed 

by a discussion of the numerical techniques involving bifurcation analysis 

and multiobjective nonlinear model predictive control (MNLMPC). The 

results are then presented, followed by the discussion and conclusions. 

Model Equations  

Model 1 (Adi-Kusumo et al (2020) [26])  

The ODE set representing the first model is  
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xval and yval represent the uninfected cancer cells and the infected ones 

by oncolytic viruses.  

The base parameters are  
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xval, 𝑦val, and vval stand for the population of uninfected cells, infected 

tumor cells, and oncolytic viruses, and zval represents the average 

expression level of CAR on the surface of the cells. 

The base parameter values are 

0.2; 0.009; 0.5; 6; 0.5; 10; 0.1; 0.5;

9. 08; 4.

r pval g c

k e b
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Model 3Malinzi et al (2018) [25] 
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Here, (uval, iva, vval,cval) represent the  un-infected tumour density, 

virus-infected tumour cell density, free virus particles, and, drug 

concentration respectively. u1 and u2 are the control parameters.  

The base parameter values are  

1. 06; 0.206; 0.01; 0.5115; 0.01; 500;

4.17; 50; 60; 1. 05; 1. 05; 1 0.5; 2 0.5u i

k e b

ku e kc e u u

   
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Bifurcation analysis  

The MATLAB software MATCONT is used to perform the bifurcation 

calculations. Bifurcation analysis deals with multiple steady-states and 

limit cycles. Multiple steady states occur because of the existence of 

branch and limit points.  Hopf bifurcation points cause limit cycles A 

commonly used MATLAB program that locates limit points, branch 

points, and Hopf bifurcation points is MATCONT (Dhooge Govearts, and 

Kuznetsov, 2003[27]; Dhooge Govearts, Kuznetsov, Mestrom and Riet, 

2004[28]). This program detects Limit points (LP), branch points (BP), 

and Hopf bifurcation points(H) for an ODE system. 

( , )
dx

f x
dt

=   (4) 

 
nx R  Let the bifurcation parameter be .  Since the gradient is 

orthogonal to the tangent vector,   
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where /f x   is the Jacobian matrix. For both limit and branch points, 

the matrix [ / ]f x   must be singular. The n+1 th component of the 

tangent vector 1nz +  = 0 for a limit point (LP)and for a branch point (BP) 
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T
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 must be singular. At a Hopf bifurcation point,  

det(2 ( , )@ ) 0x nf x I =   (7) 

@ Indicates the bialternate product while 
nI  is the n-square identity 

matrix. Hopf bifurcations cause limit cycles and should be eliminated 

because limit cycles make optimization and control tasks very difficult.  

More details can be found in Kuznetsov (1998[29]; 2009 [30]) and 

Govaerts [2000] [31].  

Hopf bifurcations cause unwanted oscillatory behavior and limit cycles. 

The tanh activation function (where a control value u is replaced by) 

( tanh / )u u   is commonly used in neural nets (Dubey et al 2022[32]; 

Kamalov et al, 2021[33] and Szandała, 2020[34]) and optimal control 

problems (Sridhar 2023[35]) to eliminate spikes in the optimal control 

profile. Hopf bifurcation points cause oscillatory behavior. Oscillations 

are similar to spikes, and the results in Sridhar (2024) [36] demonstrate 

that the tanh factor also eliminates the Hopf bifurcation by preventing the 

occurrence of oscillations. Sridhar (2024) [36] explained with several 

examples how the activation factor involving the tanh function 

successfully eliminates the limit cycle causing Hopf bifurcation points. 

This was because the tanh function increases the time period of the 

oscillatory behavior, which occurs in the form of a limit cycle caused by 

Hopf bifurcations.  

Multiobjective Nonlinear Model Predictive Control (MNLMPC)  

Flores Tlacuahuaz et al (2012) [37] developed a multiobjective nonlinear 

model predictive control (MNLMPC) method that is rigorous and does 

not involve weighting functions or additional constraints. This procedure 

is used for performing the MNLMPC calculations Here 
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(j=1, 2.n) represents   the variables that need to be minimized/maximized 

simultaneously for a problem involving a set of ODE  
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F x u
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=        (8) 

ft  being the final time value, and n the total number of objective 

variables and. u the control parameter. This MNLMPC procedure first 
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solves the single objective optimal control problem independently 

optimizing each of the variables 
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This will provide the values of u at various times. The first obtained 

control value of u is implemented and the rest are discarded. This 

procedure is repeated until the implemented and the first obtained control 

values are the same or if the Utopia point where ( 
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for all j) is obtained.  

Pyomo (Hart et al, 2017) [38] is used for these calculations.  Here, the 

differential equations are converted to a Nonlinear Program (NLP) using 

the orthogonal collocation method   The NLP is solved using IPOPT 

(Wächter And Biegler, 2006) [39]and confirmed as a global solution with 

BARON (Tawarmalani, M. and N. V. Sahinidis 2005) [40].  

The steps of the algorithm are as follows 
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4. Repeat steps 1 to 3 until there is an insignificant difference 

between the implemented and the first obtained value of the 

control variables or if the Utopia point is achieved. The Utopia 
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 Sridhar (2024) [41] proved that the MNLMPC calculations to converge 

to the Utopia solution when the bifurcation analysis revealed the presence 

of limit and branch points. This was done by imposing the singularity 

condition on the co-state equation (Upreti, 2013) [42]. If the minimization 

of 1q  lead to the value 
*

1q  and the minimization of 2q  lead to the value 

*

2q  The MNLPMC calculations will minimize the function 

* 2 * 2

1 1 2 2( ) ( )q q q q− + − . The multiobjective optimal control problem 

is 

 

* 2 * 2

1 1 2 2min ( ) ( ) ( , )
dx

q q q q subject to F x u
dt

− + − =
 

 (10)  

Differentiating the objective function results in  
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The Utopia point requires that both 
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the optimal control co-state equation (Upreti; 2013) [42] is  
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i  is the Lagrangian multiplier. ft  is the final time.  The first term in 

this equation is 0 and hence  
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singular. Hence there are two different vectors-values for [ ]i  where 
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where ( ) 0i

d
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 =  . This, coupled with the boundary condition 

( ) 0i ft =  will lead to  [ ] 0i =  This makes the problem an 

unconstrained optimization problem, and the only solution is the Utopia 

solution.   

Results  

Model 1 

When pval was used as the bifurcation parameter a Hopf bifurcation point 

was located at (xval, yval, pval) values of (3.086053, 55.448945, -

0.898380). This is shown in Fig. 1a. The limit cycle caused by this Hopf 

bifurcation point is shown in Fig. 1b.  When pval was changed to 

pval(tanh(pval)) the Hopf bifurcation point disappears, validating the 

analysis in Sridhar (2024) [36] where it is demonstrated with several 

examples that the activation factor involving the tanh function 

successfully eliminates the limit cycle causing Hopf bifurcation points.  

This is shown in Fig. 1 c.  When r2 was used as the bifurcation parameter 

a branch point was located at  

(xval, yval, r2) values of (0.000000 50.049900 4.003996). This is shown 

in Figure. 1d.  

For the MNLMPC calculations, 
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− + −   subject to the 

equations governing Model 1. This led to a value of zero (the Utopia 

solution).   The MNLMPC value of pval was 0.54427. Figs 1e, 1f and 1g. 

show the various MNLMPC profiles. 
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Model 2 

In model 2, when bifurcation analysis was performed, with u as a 

parameter, a branch point was located at (xval, yval, vval,zval,u) values 

of ( 9.e+08, 0,0, 1.043561 0.582576 ). This is seen in Fig. 2a.  

For the MNLMPC calculations, xval(0) was set as 400 and   

0 0 0
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t t t t t t

i i i

t t t
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subject to the equations governing Model 2. This led to a value of zero 

(the Utopia solution).   The MNLMPC value of u was 0.932. Figs 

2b,2c,2d, and 2e show the various MNLMPC profiles for Model 2. 

Model 3 

In model 3, when bifurcation analysis was performed, with    as a 

parameter, a branch point was located at ( , , , , )uval vval ival cval   

values of. (0, 50, 0, 0.119904, 0.000065). Additionally, a limit point was 

found at ( , , , , )uval vval ival cval   values of (0.009703, 

50.002421, 0, 0.119904, 0.000065). This is shown in Figure. 3a.  

For the MNLMPC calculations, uval(0) was set as 1000, ival(0) was set 

as 75.   
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i i

t t t t

i i

t t
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= =
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   were minimized individually, 

yielding values of 6.1539610796052817e+04, and 75. The multiobjective 

optimal control problem will involve the minimization of 
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t t
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subject to the equations governing Model 3. This led to a value of zero 

(the Utopia solution).   The MNLMPC value of u1 and u2 (the two control 

parameters) were 7.863627108510299e-07 and 16.542884153050405. 

Figs 3b-3g show the various MNLMPC profiles for Model 3. 

 
Figure 1a: Bifurcation Analysis in Model 1 indicating Hopf bifurcation 

 
Figure 1b: Bifurcation Analysis in Model 1 indicating limit cycle caused by Hopf bifurcation 

 
Figure 1c: Bifurcation Analysis in Model 1 (Hopf bifurcation eliminated by tanh activation function) 
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Figure 1d: Bifurcation Analysis in Model 1 indicating Branch Point 

 
Figure 1e: MNLMC (Model 1) yval vs t 

 
Figure 1f: MNLMC (Model 1) xval vs t 

 
Figure 1g: MNLMC (Model 1) pval vs t 
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Figure 2a: Bifurcation Analysis in Model 2 indicating branch point 

 
Figure. 2b: MNLMC (Model 2) xval vs t 

 
Figure 2c: MNLMC (Model 2) yval vs t 

 
Figure 2d: MNLMC (Model 2) vval vs t 
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Figure 2e: MNLMC (Model 2) u vs t 

     
Figure 3a: Bifurcation Analysis in Model 3 indicating Branch Point and limit point 

 
Figure 3b: MNLMPC in Model 3 vval vs t 

 
Figure 3c: MNLMPC in Model 3 ival vs t 



J. Brain and Neurological Disorders                                                                                                                                                                  Copy rights@ Lakshmi. N. Sridhar, 

Auctores Publishing LLC – Volume 8(3)-152 www.auctoresonline.org  
ISSN:2642-973X   Page 8 of 11 

 
Figure 3d: MNLMPC in Model 3 cval vs t 

 
Figure 3e: MNLMPC in Model 3 uval vs t 

 
Figure 3f: MNLMPC in Model 3 u1 vs t 

 
Figure 3g: MNLMPC in Model 3 u2 vs t 
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Discussion of Results 

Model 1 exhibits a Hopf bifurcation point, which is eliminated using an 

activation factor involving a tan function, validating the analysis in 

Sridhar (2024) [36]. All three models exhibit branch points. These branch 

points enable the MNLMC calculations to yield the Utopia solution, 

validating the analysis in Sridhar (2024) [41]. The following paragraphs 

explain the cause of the occurrence of the branch points.  

Theorem  

If one of the functions in a dynamic system is separable into two distinct 

functions, a branch point singularity will occur in the system.  

Proof  

Consider a system of equations 
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n

n

f f f f f f

x x x x x

f f f f f f

x x x x x

A





     

     

     

     

=

1 2 3 4

..........

..........n n n n n n

n

f f f f f f

x x x x x 

 
 
 
 
 
 
 
 
 
      
 
      
 
 

  (16) 

  is the bifurcation parameter. The matrix A can be written in a 

compact form as  

[ . | ]
p p

q

f f
A

x 

 
=
 

  (17) 

The tangent at any point x; ( 1 2 3 4 1[ , , , ,.... ]nz z z z z z += ) must satisfy  

0Az =   (18) 

The matrix { }
p

q

f

x




 must be singular at both limit and branch points. The 

n+1 th component of the tangent vector 1nz +  = 0 at a limit point (LP) 

and for a branch point (BP) the matrix 
T

A
B

z

 
=  
 

 must be singular.  

Let any of the functions fi are separable into 2 functions 1 2,   as  

1 2if =   (19) 

At steady-state ( , ) 0if x  = and this will imply that either 1 0 =  or 

2 0 =  or both 1  and 2   must be 0.  This implies that two branches 

1 0 =  and  2 0 =  will meet at a point where both 1  and 2  are 0.  

At this point, the matrix B will be singular as a row in this matrix would 

be  

 
2 1 2 1

1 2 1 2[ ( 0) ( 0) 0( 1., , ) | ( 0) ( 0) ] 0i i

k k k

f f
k n

x x x

   
   

  

    
= = + = =  = = = + = =

     

(20) 

The singularity in B implies that there exists a branch point. 

In model 1, a branch point was located at  

(xval, yval) values of (0.000000 50.049900). Here, the two distinct 

functions can be obtained from the first equation in Model 1  

 

( )1

( ) ( ( ) ( )) ( )
( )(1 ) .

d xval pval xval qval yval b xval yval
r xval

dt k xval yval a

+
= − −

+ +

(21) 

The 2 distinct function branches are  

0xval =   (22) 

and  

( )1

( ( ) ( )) ( )
(1 ) 0

pval xval qval yval b yval
r

k xval yval a

+
− − =

+ +
  (23)

The values

1 40; 100; 20; 0.05; 1; 0.5; 0; 50.049900r k b a qval pval xval yval= = = = = = = =  

satisfy both the above equations confirming the correctness of the 

theorem. 

 In model 2, a branch point was located at (xval, yval, vval,zval,u) values 

of ( 9.e+08; 0;0; 1  .043561 0.582576 ). The two distinct functions can 

be seen from the second equation of model 2,  

( )
( )

(
1

( ) ( )
 

) xval yval zval
u yval

xval yval

d yval

dt






 
=   
 

− −
+ +

  (24) 

Here, the two distinct function branches are  

0yval =   (25) 

and  

( )
( )

( )( )
1

xval zval
u

xval yval






 
−  

 
−

+ +
  (26) 

Substituting 
0.2; 0.009; 0.5; 9.0 08; 1.043561 u=0.582576 0;xval e zval yval  = = = = + = =   

Satisfies both the above equations, confirming the correctness of the 

theorem. 

In model 3, a branch point was located at 

( , , , , )uval vval ival cval   values of. (0, 50, 0, 0.119904, 

0.000065) and the two distinct branches can be obtained from the first 

equation in model 3 which is  

 ( )

( )

( )( ) ( )
( ) 1   u

uval ival uval cvald uval uval vval
uval

dt k ku uval kc cval




      
               

+
= − − −

+ +

 (27) 

These 2 branches are  

0uval =   (28) 

and 
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( )

( )
 1   0u

uval ival cvalvval

k ku uval kc cval




+
− − −

      
=                + +

  (29) 

Substituting 

1. 06; 0.01; 50; 1. 05; 1. 05;

uval=0,  vval=50,  ival=0,  cval=0.119904,  0.000065

uk e ku e kc e 



= + = = = + = +

=
  

satisfies both the above equations confirming the correctness of the 

theorem. 

Conclusions  

Bifurcation analysis and multiobjective nonlinear control (MNLMPC) 

studies in three oncolytic virus models. The bifurcation analysis revealed 

the existence of a Hopf bifurcation point in one of the models and branch 

points in all the three models. The Hopf bifurcation point was eliminated 

using an activation factor that involves the tanh function.  The branch 

points (which cause multiple steady-state solutions from a singular point) 

are very beneficial because they enable the Multiobjective nonlinear 

model predictive control calculations to converge to the Utopia point (the 

best possible solution) in the models. It is proved (with computational 

validation) that the branch points were caused because of the existence of 

two distinct separable functions in one of the equations in each dynamic 

model. A theorem was developed to demonstrate this fact for any dynamic 

model.  A combination of bifurcation analysis and Multiobjective 

Nonlinear Model Predictive Control (MNLMPC) for dynamic models 

involving oncolytic viral therapy is the main contribution of this paper.  
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