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Abstract 

As biomedical data continue to grow in complexity and often lack annotation, unsupervised machine learning (UML) has 

emerged as a powerful approach for uncovering hidden patterns and enabling data-driven discovery in pharmacology. This 

review examines the expanding role of UML in drug discovery, pharmacogenomics, and pharmacovigilance. Core techniques 

such as clustering, dimensionality reduction, and generative modeling support hypothesis-free analysis and contribute to 

translational insight. In drug discovery, UML enhances molecular representation, facilitates lead optimization, and guides 

scaffold development. Graph neural networks (GNNs) are emphasized for their ability to capture complex structural and 

chemical features that improve drug–target interaction prediction and de novo molecular generation. In clinical contexts, UML 

enables stratification of pharmacogenomic profiles and supports early detection of adverse drug events through anomaly 

detection and natural language processing applied to real-world data. By integrating insights from both algorithmic 

development and real-world applications, this review underscores the growing value of UML as a pivotal tool in advancing 

contemporary pharmacological research and data-driven decision-making. 
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Introduction 

As biomedical datasets continue to expand in size, complexity, and diversity, 

unsupervised machine learning (UML) has become an increasingly 

important tool in pharmacological research. These datasets originate from a 

range of sources including chemical compound libraries, multi-omics 

platforms, electronic health records (EHRs), and adverse event databases. 

Traditional supervised approaches often require extensive annotation and are 

limited by labeling biases or incomplete clinical outcomes. In contrast, UML 

algorithms operate without labeled outcomes, enabling autonomous 

identification of latent structures, statistical regularities, and hidden 

relationships that support hypothesis generation and translational insight. 

This review examines the role of UML across three major domains of 

pharmaceutical science: drug discovery, pharmacogenomics, and 

pharmacovigilance. In drug discovery, clustering, dimensionality reduction, 

and generative modeling techniques improve molecular representation, 

facilitate scaffold identification, and accelerate lead optimization [1]. Special 

attention is given to graph neural networks (GNNs), which capture both local 

and global chemical structure features and enhance predictions of drug–

target interactions as well as de novo compound generation. In 

pharmacogenomics, UML supports the stratification of patients by 

identifying molecular subgroups and integrating genomic, transcriptomic, 

and epigenomic signals to inform individualized dosing and therapeutic 

selection. In pharmacovigilance, UML enables the detection of latent safety 

signals using techniques such as anomaly detection and natural language 

processing, applied to large-scale structured and unstructured data from 

clinical and post-market surveillance settings [2]. 

By analyzing recent methodological developments and applied case studies, 

this review underscores UML’s emergence as both a foundational 

methodology and a practical framework for uncovering biologically 

meaningful patterns in high-dimensional, unlabeled datasets. Its flexibility 

and scalability position UML as a central component of next-generation 

pharmacological research and data-driven clinical innovation. 

Methods 

A targeted literature review was performed using Google Scholar, PubMed, 

and IEEE Xplore to identify peer-reviewed articles relevant to unsupervised 

machine learning in drug discovery, pharmacogenomics, and 

pharmacovigilance. The search was restricted to publications from the past 

five years to maintain contemporary relevance. Keyword combinations such 

as “unsupervised learning,” “graph neural networks,” “pharmacogenomics,” 

and “pharmacovigilance” were applied to capture both methodological 

advancements and translational applications. Articles were screened based 

on their abstracts, methodological integrity, and relevance to data-driven 

pharmaceutical research. 
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Methodology of Unsupervised Machine Learning 

At its core, UML seeks to uncover latent structures, statistical regularities, or 

manifold representations within datasets that lack explicit labels or target 

variables. Unlike supervised machine learning (SML), which learns a 

function 𝑓:𝑋→𝑌 by minimizing error between predicted outputs and known 

ground truth labels 𝑌, UML operates solely on the input space 𝑋 [3]. This 

distinction is critical: whereas SML is constrained by the availability and 

quality of labeled data, UML autonomously infers patterns, enabling 

discovery in settings where annotation is scarce, noisy, or infeasible—such 

as high-dimensional omics data, unlabeled chemical libraries, or 

unstructured clinical narratives. UML algorithms identify clusters, reduce 

dimensionality, or learn generative representations that expose underlying 

biological heterogeneity, facilitate hypothesis generation, and augment 

downstream tasks like drug repurposing or patient stratification without 

relying on prior assumptions or labeling biases [4]. 

Key Components of UML 

To operationalize these capabilities, UML relies on a structured pipeline 

composed of interdependent stages. Each component contributes to the 

model’s ability to uncover meaningful representations in complex 

biomedical data. The key elements include: 

1. Data Preparation & Feature Extraction: As with any machine 

learning pipeline, UML begins with rigorous preprocessing that 

includes cleaning, normalization, and encoding of datasets to 

ensure compatibility and reduce noise. In the absence of labeled 

outcomes, domain-informed feature engineering becomes 

especially important for preserving the biological, chemical, or 

clinical relevance of the data, particularly in high-dimensional 

omics or chemical descriptor spaces. 

2. Algorithm Selection: The choice of algorithm depends on the 

data modality and the intended outcome. For example, clustering 

algorithms such as K-means, DBSCAN, and hierarchical 

clustering are used to uncover latent groupings in molecular 

datasets. Dimensionality reduction techniques like PCA, t-SNE, 

and UMAP help simplify complex feature spaces, making them 

more interpretable for visualization and structure discovery. 

Generative models, including variational autoencoders (VAEs), 

GANs, and transformer-based architectures, learn underlying 

data distributions to generate novel molecular or clinical 

representations. 

3. Learning Process: UML models optimize internal parameters 

without supervision by maximizing intra-cluster similarity (e.g., 

in clustering) or minimizing reconstruction loss (e.g., in 

autoencoders). Since there is no explicit target variable, 

performance depends on how well the model captures structure, 

reduces entropy, or reconstructs meaningful latent spaces. In 

chemical modeling, this might manifest as embedding 

compounds into latent vectors that preserve pharmacophoric 

features. 

4. Validation & Interpretability: Evaluating UML outcomes often 

requires indirect metrics such as silhouette score (clustering 

cohesion), reconstruction error (autoencoders), or visualization 

of latent spaces. Cross-validation is often complemented by 

expert annotation or alignment with known biological pathways. 

Increasingly, tools like SHAP or attention mechanisms are used 

to render UML models more transparent and biologically 

interpretable. 

5. Deployment & Integration: Once trained, UML models are 

embedded into larger pipelines for downstream tasks—virtual 

screening, biomarker discovery, or pharmacovigilance signal 

detection. These models can be iteratively refined using updated 

datasets or combined with supervised components in hybrid 

architectures, enabling continuous learning and scalability in 

dynamic biomedical environments [3][4][5]. 

Summary of Existing Literature 

Recent advances underscore the growing utility of UML in modeling 

molecular interactions, optimizing lead compounds, and enhancing post-

market drug safety surveillance. For example, Mena-Yedra et al. introduced 

ALMERIA, a decision-support tool that estimates compound similarity and 

predicts molecular activity by accounting for conformational variability 

across large chemical libraries. Implemented with scalable infrastructure, 

ALMERIA demonstrated exceptional performance on the DUD-E 

benchmark dataset, achieving ROC AUC scores of 0.99, 0.96, and 0.87 

across various partitions. Notably, the study emphasized the model’s 

generalization capacity and interpretability, using SHAP analysis to 

elucidate feature contributions—an essential step toward transparent AI in 

drug discovery [6]. 

Complementing this, Yin et al. developed DeepDrug, a unified deep learning 

framework that integrates residual graph convolutional networks (Res-

GCNs) and convolutional neural networks (CNNs) to learn both structural 

and sequential representations of drugs and proteins. DeepDrug 

outperformed state-of-the-art models across multiple tasks, including binary 

and multi-label classification of drug–drug and drug–target interactions. 

Beyond predictive accuracy, the authors applied DeepDrug to the DrugBank 

database for drug repurposing, identifying top-ranked candidates against 

SARS-CoV-2—seven of which had independent support for potential 

efficacy [7]. This highlights the model’s translational potential in real-world 

therapeutic contexts. 

Polanski’s review offers a broader conceptual lens, tracing the evolution of 

UML in cheminformatics from early self-organizing maps (SOMs) to 

modern deep chemistry paradigms. He argues that UML excels not only in 

identifying chemically intuitive features but also in uncovering latent 

molecular patterns beyond human perception. The review underscores the 

promise of deep unsupervised architectures in scaffold hopping, feature 

learning, and molecular representation, while also noting current 

limitations—particularly the scarcity of high-quality, labeled chemical 

property data. Polanski concludes that while deep chemistry is still maturing, 

UML is poised to play a pivotal role in bridging data-driven discovery with 

rational drug design [8]. 

Further illustrating the breadth of UML applications in drug discovery, 

Zhang et al. introduced CASTELO, a hybrid framework that integrates 

machine learning with molecular modeling to streamline lead optimization 

workflows. By leveraging contact matrices derived from molecular 

dynamics simulations and encoding temporal dynamics through 

convolutional variational autoencoders (CVAEs), CASTELO identifies 

submolecular “hot spots” for chemical modification without requiring 

extensive structure–activity relationship data. The study demonstrated that 

CVAE-based clustering outperformed conventional methods in ranking 

atom subtypes for optimization, offering medicinal chemists a data-driven 

strategy to enhance potency while reducing development time [9]. 

In the realm of post-translational modification prediction, Luo et al. 

developed DeepPhos, a deep learning model tailored to identify protein 

phosphorylation sites with high accuracy. Unlike traditional predictors 

reliant on handcrafted features, DeepPhos employs densely connected 

convolutional blocks to capture hierarchical sequence representations. The 

model supports both general and kinase-specific predictions, outperforming 

existing tools across multiple benchmarks. Its architecture enables nuanced 

detection of phosphorylation motifs, which are critical for understanding 

signaling cascades and for designing kinase-targeted therapeutics. This 

underscores the value of deep unsupervised representations in proteomics 

[10]. 

Expanding into clinical informatics, Miotto et al. proposed Deep Patient, an 

unsupervised deep feature learning framework that generates patient-level 

embeddings from EHRs using stacked denoising autoencoders. Trained on 
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data from over 700,000 patients, Deep Patient captured latent health 

representations that significantly improved disease prediction across 78 

conditions, including schizophrenia, diabetes, and various cancers. The 

model’s ability to generalize across diverse clinical domains highlights the 

translational power of UML in precision medicine, enabling early risk 

stratification and personalized care strategies [11]. 

Offering a broader lens on machine learning’s role in pharmaceutical R&D, 

Ibáñez Antolín emphasized the importance of unsupervised techniques—

particularly clustering and dimensionality reduction—in early-stage 

applications such as target identification, biomarker discovery, and digital 

pathology analysis. The study highlighted that machine learning workflows 

often begin with extensive data preprocessing, where UML plays a pivotal 

role in revealing latent structure within high-dimensional omics and imaging 

datasets. This exploratory capability is especially valuable when labeled data 

are limited or incomplete, reinforcing the utility of unsupervised methods in 

hypothesis generation and mechanistic insight across translational research 

domains [1]. 

Finally, Vamathevan et al. provided a comprehensive review of ML 

applications across the drug development pipeline, highlighting UML’s 

contributions to target validation, compound screening, and clinical trial 

optimization. The authors acknowledged challenges such as interpretability 

and reproducibility but emphasized that, when paired with high-quality data, 

UML can reduce attrition rates and accelerate decision-making. Notably, the 

review underscored the synergy between UML and supervised learning in 

hybrid models, advocating for integrative approaches that combine 

predictive power with biological plausibility [2]. 

Innovative Approaches: UML for Lead Optimization 

The rapid advancement and adoption of UML in lead optimization reflects 

its growing utility in navigating high-dimensional chemical space without 

reliance on labeled potency data. By uncovering latent structural and 

physicochemical patterns through clustering, dimensionality reduction, and 

representation learning, UML enables the identification of scaffold 

relationships, substituent effects, and bioisosteric transformations that might 

otherwise remain obscured. This is particularly advantageous in early-stage 

optimization, where empirical activity data are often sparse or noisy. When 

integrated with graph-based encodings or generative frameworks, UML 

serves as a foundational layer for downstream predictive modeling, offering 

a scalable, hypothesis-free strategy for rational compound refinement [12]. 

In her chapter on AI-driven drug development, Ashenden frames lead 

optimization as a multidimensional balancing act—one that extends beyond 

potency to include solubility, metabolic stability, and toxicity [13]. She 

outlines how AI, including unsupervised methods, can integrate 

heterogeneous datasets such as high-throughput screening results, 

physicochemical descriptors, and ADMET profiles. This integration enables 

medicinal chemists to prioritize chemical modifications that enhance drug-

likeness while minimizing downstream attrition. Ashenden emphasizes that 

UML is particularly well-suited for identifying liabilities early in the 

pipeline, where labeled outcomes are often unavailable or incomplete [13]. 

A broader methodological perspective is offered by Li et al., who review the 

landscape of machine learning-based scoring functions (ML-SFs) for 

structure-based lead optimization. While their primary focus is on supervised 

models, they highlight key limitations of classical scoring functions and 

emphasize the need for approaches that generalize across diverse protein–

ligand complexes. The authors argue that unsupervised pretraining, 

including methods such as autoencoders, graph embeddings, and contrastive 

learning, can significantly improve the quality of molecular representations 

used in predictive tasks. Their analysis supports a hybrid modeling 

framework in which UML-derived features form the foundation for more 

accurate and transferable ML-SFs [14]. 

A more targeted application of unsupervised spatial learning can be seen in 

the development of DeltaDelta, a deep 3D convolutional neural network 

introduced by Jiménez-Luna et al. to rank congeneric ligands based on 

predicted potency differences [15]. The model architecture incorporates an 

unsupervised pretraining phase that learns spatial features from protein–

ligand complexes, which are then fine-tuned using potency labels. To 

evaluate its performance, the researchers conducted one of the largest blind 

assessments to date, involving over 3,000 ligands and 13 targets sourced 

from Janssen, Pfizer, and Biogen. Across these datasets, DeltaDelta 

consistently outperformed traditional docking-based methods in ranking 

accuracy. The study highlights how embedding unsupervised spatial 

representation into lead optimization pipelines can produce models that are 

both predictive and broadly generalizable across diverse chemical series 

[15]. 

In the domain of fragment-based design, Green and Durrant introduced 

DeepFrag, a deep convolutional neural network trained on protein–ligand 

complexes with systematically removed fragments. The model learns to 

predict fragment vectors that complement the receptor environment, 

effectively identifying fragment–receptor compatibility patterns without 

explicit supervision. Benchmarking revealed that DeepFrag could recover 

the correct fragment from a library of over 6,500 candidates approximately 

58% of the time. Even when the exact fragment was not retrieved, top-ranked 

alternatives were often chemically similar and synthetically tractable. The 

authors also released an open-source browser-based implementation, 

democratizing access to AI-assisted fragment elaboration and accelerating 

hypothesis generation in structure-guided design [16]. 

Visualizing Drug Data: The Role of Graph Neural Networks 

Graph neural networks (GNNs) have become key technology in molecular 

representation learning, offering a flexible and expressive architecture for 

encoding chemical structures as graphs. In this framework, atoms are treated 

as nodes and covalent bonds as edges, allowing GNNs to capture both local 

atomic environments and long-range topological dependencies. This 

capability supports the modeling of stereoelectronic effects, conformational 

dynamics, and functional group connectivity, all of which are essential for 

accurate prediction of pharmacological properties. Unlike traditional 

descriptor-based models that depend on handcrafted molecular fingerprints, 

GNNs learn task-specific representations directly from graph topology 

through iterative message-passing mechanisms. This approach has 

demonstrated strong performance across a range of applications, including 

drug–target interaction (DTI) prediction, binding affinity estimation, 

molecular property regression, and de novo molecular generation [12]. 

A comparative study by Jiang et al. evaluated the performance of four 

descriptor-based models (SVM, XGBoost, RF, DNN) and four graph-based 

models (GCN, GAT, MPNN, Attentive FP) across 11 public datasets 

covering endpoints such as solubility, toxicity, and ADME properties. While 

descriptor-based models generally outperformed GNNs on smaller datasets, 

Attentive FP and MPNN demonstrated superior performance in multi-task 

and large-scale settings. The authors concluded that GNNs offer 

complementary advantages in capturing structural nuances and 

recommended their integration into hybrid modeling pipelines [17]. 

To enhance predictive robustness, Bongini et al. developed FP-GNN, a 

hybrid architecture that fuses molecular fingerprints with graph-based 

embeddings. Evaluated on 13 public datasets and 14 phenotypic screening 

datasets, FP-GNN consistently outperformed both traditional machine 

learning and deep learning baselines. The model also demonstrated resilience 

to noise and improved interpretability, suggesting that combining 

topological and fingerprint-derived features enhances generalizability in 

real-world drug discovery scenarios [18]. 

In the generative modeling space, Xiong et al. explored the use of GNNs for 

de novo molecular generation by integrating them with reinforcement 

learning and generative frameworks. Their approach enabled the generation 

of chemically valid, synthetically accessible molecules optimized for 

properties such as binding affinity and logP. Compared to SMILES-based 

models, GNN-based architectures achieved higher validity, novelty, and 

property alignment—highlighting their suitability for scaffold-constrained 

and multi-objective optimization in early-stage design [19]. 
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For DTI prediction, Zhang et al. reviewed recent GNN-based models that 

incorporate attention mechanisms, multi-modal embeddings, and 3D 

structural information. These architectures outperform traditional sequence-

based models by capturing spatial and topological dependencies critical for 

accurate interaction prediction. The authors emphasized that GNNs, 

particularly when combined with protein structure data, offer scalable and 

interpretable solutions for virtual screening and drug repurposing [20]. 

A more targeted application was proposed by Wang et al., who introduced 

DataDTA—a dual-graph GNN framework for predicting drug–target 

binding affinities. The model integrates molecular graphs with predicted 

protein pocket descriptors and sequence embeddings, using a dual-

interaction aggregation strategy to capture both intra- and inter-molecular 

interactions. On benchmark datasets, DataDTA achieved a concordance 

index of 0.806 and a Pearson correlation of 0.814, outperforming several 

state-of-the-art baselines. These results underscore the value of combining 

structural and sequence-level features in affinity prediction [21]. 

Looking ahead, Abate et al. offered a forward-looking perspective on 

conditional de novo drug design using GNNs. Their review emphasized the 

importance of conditioning mechanisms, such as scaffold constraints or 

pharmacological profiles, to guide molecular generation toward specific 

objectives. Advances in graph-based generative models now support multi-

objective optimization across drug-likeness, synthetic accessibility, and 

target specificity. These developments position GNNs as a scalable and 

customizable platform for rational drug design [22]. 

Stratifying Complexity: UML in Pharmacogenomics 

The variability in drug response across individuals, shaped by genomic 

variation, epigenetic regulation, and environmental exposures, remains a 

central challenge in precision medicine. UML offers a data-driven 

framework for addressing this complexity by revealing latent structure in 

high-dimensional pharmacogenomic datasets without relying on predefined 

phenotypic labels. Unlike supervised models that require annotated 

outcomes such as therapeutic efficacy or adverse events, UML algorithms 

autonomously identify patterns in genomic variants, transcriptomic 

signatures, and pharmacokinetic trajectories. This enables the stratification 

of patients into molecularly coherent subgroups, the discovery of novel 

biomarkers, and the elucidation of genotype–phenotype relationships that 

may otherwise remain obscured. Techniques such as clustering, 

dimensionality reduction, and autoencoder-based representation learning are 

particularly well suited for integrating multi-omics data and generating 

biologically grounded hypotheses to inform individualized treatment 

strategies [12]. 

A widely accepted perspective on this approach is offered by Kalinin et al., 

who explored the use of deep unsupervised architectures such as 

autoencoders and deep belief networks to learn hierarchical representations 

from heterogeneous data sources, including gene expression, epigenetic 

marks, and electronic health records (EHRs). Their work demonstrated that 

these representations enhance downstream tasks such as drug response 

prediction and adverse event forecasting, particularly through the 

identification of regulatory variants in noncoding regions. The authors argue 

that unsupervised machine learning will play a central role in the 

development of scalable and interpretable frameworks that enable 

personalized medication selection and dosing strategies [23]. 

In a complementary study, Lautier et al. applied clustering algorithms to 

pharmacokinetic time-series data, specifically plasma concentration–time 

curves, to identify latent subgroups of drug metabolism. Using methods such 

as k-means and hierarchical clustering, they showed that UML could recover 

clinically meaningful pharmacokinetic phenotypes, including fast and slow 

metabolizers, without prior knowledge of covariates or outcomes. Their case 

study involving 250 PK curves demonstrated that unsupervised clustering 

could independently validate pharmacogenomic findings. This suggests its 

utility in guiding individualized dosing regimens for drugs with narrow 

therapeutic indices [24]. 

Expanding the scope to healthcare operations, Lopez et al. developed a 

hybrid framework that integrates UML with process mining and discrete-

event simulation to model patient flow and treatment trajectories across 

clinical settings. By analyzing EHR-derived event logs, they identified 

common care pathways and deviations that may influence drug response and 

safety. Their approach enables simulation of treatment outcomes under 

varying protocols, offering a systems-level perspective on how molecular 

subtypes interact with real-world clinical workflows. This integration of 

UML with operational modeling highlights its potential to bridge molecular 

stratification with actionable clinical decision-making [25]. 

Uncovering Latent Safety Signals: UML in Pharmacovigilance 

The growing complexity of pharmacotherapy, driven by demographic aging, 

multimorbidity, and widespread polypharmacy, has revealed critical 

limitations in conventional pharmacovigilance systems. These systems often 

depend on static alert thresholds, spontaneous reporting, and predefined rule 

sets, which may fail to capture emerging or context-specific safety concerns. 

UML introduces a data-centric alternative by enabling the detection of latent 

safety signals within large-scale, unlabeled clinical datasets. By modeling 

the probability distributions of high-dimensional sources such as EHRs, 

prescription logs, and adverse event registries, UML algorithms can 

autonomously identify anomalous prescribing behaviors, rare adverse drug 

reactions (ADRs), and systemic deviations in medication use [12]. 

Techniques such as one-class support vector machines (OCSVMs), isolation 

forests, and density-based clustering are particularly effective for detecting 

these outliers, especially when configured to incorporate patient-level 

covariates like renal function, age, and comorbidity burden. When combined 

with natural language processing (NLP), UML further extends its utility to 

unstructured data sources including clinical notes, discharge summaries, and 

social media content [4][5]. This integration supports a multi-modal, scalable 

pharmacovigilance framework that is better equipped to respond to evolving 

safety risks in real-world settings. 

A compelling demonstration of this approach comes from Nagata et al., who 

applied OCSVMs to detect overdose and underdose prescriptions across 21 

commonly used drugs using EHR data from Kyushu University Hospital. 

Each model was trained on three patient-specific features—age, weight, and 

prescribed dose—and evaluated against both real-world and synthetic dosing 

errors. The OCSVMs successfully identified 87.1% of clinically confirmed 

dosing anomalies and achieved high F1-scores on synthetic test sets (0.973 

for overdose, 0.839 for underdose). Comparative analysis with other 

anomaly detection methods confirmed the superior precision and recall of 

the OCSVM approach, underscoring its potential as a real-time safeguard in 

high-risk prescribing environments [26]. 

Expanding the methodological scope, Yap advocates for integrating UML 

across diverse pharmacovigilance data streams, including EHRs, 

spontaneous reporting systems, and social media platforms. His work 

emphasizes the synergy between UML and NLP, particularly in mining 

unstructured text for early detection of rare ADRs and drug–drug 

interactions. By combining clustering, anomaly detection, and sentiment 

analysis, Yap proposes a hybrid framework that enhances signal detection 

while preserving clinical interpretability. He also stresses the importance of 

regulatory alignment and domain expertise to ensure that UML-generated 

insights are both actionable and trustworthy [27]. 

From an ethical and operational standpoint, Zou highlights the challenges of 

deploying UML in clinical pharmacovigilance. His analysis calls for 

transparent model design, clinician engagement, and robust data governance 

to mitigate risks such as alert fatigue, algorithmic bias, and overfitting. Zou 

also notes that UML can improve pharmacovigilance efficiency by filtering 

noise and prioritizing high-risk signals in large-scale surveillance systems—

an essential capability in resource-constrained healthcare settings [28]. 

Finally, a systems-level lens was applied by Basile et al., who examined how 

UML can be used to link multi-omics datasets with clinical phenotypes to 

uncover mechanistic insights into ADRs. Their approach employed 

dimensionality reduction and clustering to delineate patient subpopulations 
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with differential drug responses, providing a foundation for hypothesis 

generation, biomarker discovery, and targeted safety assessments. Basile’s 

work highlights UML not only as a detection engine but as a strategic tool 

for shaping future pharmacovigilance and regulatory science efforts [29]. 

Conclusions 

Unsupervised machine learning (UML) is transforming pharmacological 

research by uncovering latent structure within complex, unlabeled datasets. 

This review has illustrated how UML contributes to drug discovery through 

scaffold identification and lead optimization with graph neural networks, 

supports patient stratification in pharmacogenomics using deep 

representations, and facilitates the detection of safety signals in 

pharmacovigilance by leveraging anomaly detection and natural language 

processing. These methods enhance molecular design, personalized 

medicine, and real-world drug safety monitoring. Although interpretability 

and regulatory challenges remain, UML offers a foundational approach for 

data-driven discovery in environments where annotation is limited or 

unavailable. 
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