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Abstract 

Water pollution poses a considerable threat to public health, and it is important to understand water pollution transmission 

dynamics.  This paper presents a mathematical framework involving bifurcation analysis and multiobjective nonlinear model 

predictive control (MNLMPC) for two models involving water pollution. Bifurcation analysis is a powerful mathematical tool 

used to address the nonlinear dynamics of any process. The MATLAB program MATCONT was utilized to conduct the 

bifurcation analysis of the water pollution models. Several factors must be taken into account, and multiple objectives must be 

achieved simultaneously. The MNLMPC calculations for the water pollution models were performed using the optimization 

language PYOMO in conjunction with the advanced global optimization solvers IPOPT and BARON. The bifurcation analysis 

revealed the presence of branch points in the two models. These branch points are advantageous as they allow the multiobjective 

nonlinear model predictive control calculations to converge to the Utopia point, which represents the most beneficial solution. 

The combination of bifurcation analysis and multiobjective nonlinear model predictive control for models involving water 

pollution is the main contribution of this paper. 
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Introduction 

To minimize effluent contamination concentrations, wastewater treatment 

plants use the activated sludge process.  This process should be conducted 

efficiently, keeping all unnecessary expenses to a minimum. To achieve this 

goal, there has been a lot of modelling work to understand the various 

chemical reactions involved in this process. Henze et al (1987) [1] developed 

a general model for single-sludge wastewater treatment systems. Henze et al 

(1995) [2] extended and improved this earlier model. 

Henze (1999) [3] performed modelling work on the aerobic wastewater 

treatment processes taking into account environmental impacts. Gujer et al 

(1995) [4] further improved upon the models of Henze. Fikar et al (2005) [5] 

developed strategies to ensure the optimal operation of alternating activated 

sludge processes. Yoon et al (2005) [6], Critical operational parameters for 

zero sludge production in biological wastewater treatment processes 

combined with sludge disintegration. Nelson et al (2009) [7] used 

continuation methods to determine the steady-state behaviour of the 

activated sludge model (ASM1). 

The activated sludge models are highly nonlinear, and many factors must be 

taken into account to ensure that the process is conducted most efficiently. 

In this article, a combination of bifurcation analysis and multiobjective 

nonlinear model predictive control (MNLMPC) for the activated sludge 

model (ASM1) (Nelson et al, 2009) [7] is performed. The bifurcation 

analysis reveals the presence of branch points, which are very beneficial 

because they enable the MNLMPC calculations to converge to the Utopia 

point, which is the best possible solution. 

This paper is organized as follows. First, the ASM1 model equations) 

(Nelson et al, 2009) [7] are presented. The numerical procedures (bifurcation 

analysis and multiobjective nonlinear model predictive control (MNLMPC) 

are then described. This is followed by the results and discussion and 

conclusions.  

ASM1 model equations  
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The parameter values are  

S , ,

, , , , ,

, , , A

4; 1; 0.5; 0.4; 0.2;  K 20; 0.03; 9; 15;

1; 10; 200; 0; 0;  S 2;

0; 0; 100;  Y 0.24; 0.67; 0.05; 0.22;

0.08; 0.0
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The variables , , , , , , , ,S S BH BA O NO NH ND NDS X X X S S S S X  

represent the concentrations of readily biodegradable soluble substrate, 

slowly biodegradable particulate substrate, active heterotrophic particulate 

mass, active autotrophic particulate mass, soluble oxygen, soluble nitrate and 

nitrite nitrogen, soluble ammonium nitrogen, soluble biodegradable organic 

material, and particulate biodegradable organic nitrogen.  

Bifurcation analysis  

 The MATLAB software MATCONT is used to perform the bifurcation 

calculations. Bifurcation analysis deals with multiple steady-states and limit 

cycles.  Multiple steady states occur because of the existence of branch and 

limit points. Hopf bifurcation points cause limit cycles A commonly used 

MATLAB program that locates limit points, branch points, and Hopf 

bifurcation points is MATCONT (Dhooge Govearts, and Kuznetsov, 

2003[8]; Dhooge Govearts, Kuznetsov, Mestrom and Riet, 2004[9]). This 

program detects Limit points (LP), branch points (BP), and Hopf bifurcation 

points(H) for an ODE system  

( , )
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f x
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=   (2) 
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where  /f x   is the Jacobian matrix. For both limit and branch points, 
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 must be singular. At a Hopf bifurcation point,  
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  @ Indicates the bialternate product while 
nI  is the n-square identity 

matrix. Hopf bifurcations cause limit cycles and should be eliminated 

because limit cycles make optimization and control tasks very difficult.  

More details can be found in Kuznetsov (1998 [10]; 2009[11]) and Govaerts 

[2000] [12] 

Multiobjective Nonlinear Model Predictive Control (MNLMPC)  

Flores Tlacuahuaz et al (2012) [13] developed a multiobjective nonlinear 

model predictive control (MNLMPC) method that is rigorous and does not 

involve weighting functions or additional constraints. This procedure is used 

for performing the MNLMPC calculations Here   
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 ft  being the final time value, and n the total number of objective variables 
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This will provide the values of u at various times. The first obtained control 

value of u is implemented and the rest are discarded. This procedure is 

repeated until the implemented and the first obtained control values are the 

same or if the Utopia point where ( 

0

*( )
i f

i

t t

j i j

t

q t q
=

=

=  for all j) is 

obtained.  

Pyomo (Hart et al, 2017) [14] is used for these calculations.  Here, the 

differential equations are converted to a Nonlinear Program (NLP) using the 

orthogonal collocation method   The NLP is solved using IPOPT (Wächter 

And Biegler, 2006) [15]and confirmed as a global solution with BARON 

(Tawarmalani, M. and N. V. Sahinidis 2005) [16].  

The steps of the algorithm are as follows   

1. Optimize 

0

( )
i f

i

t t

j i

t
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=

=

  and obtain 
*

jq  at various time intervals 

ti. The subscript i is the index for each time step.   

2. Minimize 

0
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1
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=

−  and get the control values 

for various times. 

3. Implement the first obtained control values  

4. Repeat steps 1 to 3 until there is an insignificant difference 

between the implemented and the first obtained value of 
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thecontrol variables or if the Utopia point is achieved. The 

Utopia point is when 

0

*( )
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i
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j i j

t

q t q
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=

=  for all j.  

 Sridhar (2024) [17] proved that the MNLMPC calculations to converge to 

the Utopia solution when the bifurcation analysis revealed the presence of 

limit and branch points. This was done by imposing the singularity condition 

on the co-state equation (Upreti, 2013) [18]. If the minimization of 1q  lead 

to the value 
*

1q  and the minimization of 2q  lead to the value 
*

2q   The 

MNLPMC calculations will minimize the function 

* 2 * 2

1 1 2 2( ) ( )q q q q− + −  .  The multiobjective optimal control problem is 

* 2 * 2
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Differentiating the objective function results in  
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The Utopia point requires that both 
*

1 1( )q q−  and 
*

2 2( )q q−  are zero.  

Hence   

* 2 * 2
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i

d
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the optimal control co-state equation (Upreti; 2013) is  

* 2 * 2
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i
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i  is the Lagrangian multiplier. ft  is the final time.  The first term in this 

equation is 0 and hence  

( ) ; ( ) 0i x i i f

d
f t

dt
  = − =   (12) 

At a limit or a branch point, for the set of ODE ( , )
dx

f x u
dt

=  xf  is 

singular. Hence there are two different vectors-values for [ ]i  where 

( ) 0i

d

dt
   and ( ) 0i

d

dt
   . In between there is a vector [ ]i  where 

( ) 0i

d

dt
 =  . This coupled with the boundary condition ( ) 0i ft =  will 

lead to  [ ] 0i =  This makes the problem an unconstrained optimization 

problem, and the only solution is the Utopia solution.   

Results and Discussion 

The bifurcation analysis on the ASM1 model revealed the existence of two 

branch points at 

 

Figure 1: Branch points for ASM1 model 

( , , , , , , , , , )S S BH BA O NO NH ND NDS X X X S S S S X d   values of (200, 

56.179, 0, 0,9.65, 1, 15, 9, 0, 0.179) and (200.000000 56.179, 0, 0,9.36, 1, 

15, 9, 0,0.343). These branch points are indicated in Fig. 1. The presence of 

the branch points is beneficial because they allow the MNLMPC calculations 

to attain the Utopia solution for several objective functions. 

Three MNLMPC calculations were performed. In the first case, the 

particulate variables (active heterotrophic particulate mass, active 

autotrophic particulate mass, and particulate biodegradable organic nitrogen) 

were minimized. In this case, 

0 0 0
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t t t t t t

BH i BA i ND i
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X t X t X t
= = =

= = =
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was   minimized individually and each of them led to a value of 0 .  The 

overall optimal control problem will involve the minimization of 

0 0 0

2 2 2( ( )) ( ( )) ( ( ))
i f i f i f

i i i

t t t t t t

BH i BA i ND i

t t t

X t X t X t
= = =

= = =

+ +    was minimized 

subject to the equations governing the model. This led to a value of zero (the 

Utopia solution.   

The various concentration profiles for this MNLMPC calculation are shown 

in Figures. 2a-2d.  

The obtained control profile of s exhibited noise (Figure. 2e).  This was 

remedied using the Savitzky-Golay Filter. The smoothed-out version of this 

profile is shown in Figure.2f.  
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Figure 2a: SNO profile MNLMPC particulate concentration minimization 

 

Figure 2b: SNH profile MNLMPC particulate concentration minimization 

 

Figure2c: SNO profile MNLMPC particulate concentration minimization 

 
Figure 2d: XBH, XBA, XND profile MNLMPC particulate concentration minimization 

 

Figure 2e: dilution rate MNLMPC particulate concentration minimization 
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Figure 2f: dilution rate (with Savitzky Golay filter) MNLMPC particulate concentration minimization 

In the second case, the variables representing the soluble materials (soluble 

nitrate and nitrite nitrogen, soluble ammonium nitrogen, and soluble 

biodegradable organic material) were minimized. In this case, 

0 0 0

( ), ( ), ( )
i f i f i f

i i i

t t t t t t

NO i NH i ND i

t t t

S t S t S t
= = =

= = =

    was minimized individually, 

leading to values of 0.4121, 4.722, and 0.019971.  The overall optimal 

control problem will involve the minimization of 

0 0 0

2 2 2( ( ) 0.4121) ( ( ) 4.722) ( ( ) 0.019971)
i f i f i f

i i i

t t t t t t

NO i NH i ND i

t t t

S t S t S t
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− + − + −    

was minimized subject to the equations governing the model. This led to a 

value of zero (the Utopia solution.   

The various concentration profiles for this MNLMPC calculation are shown 

in Figs. 3a-3d.  

The obtained control profile of s exhibited noise (Fig. 3e).  This was 

remedied using the Savitzky-Golay Filter. The smoothed-out version of this 

profile is shown in Fig.3f.  

 

Figure 3a: SNO profile MNLMPC soluble material concentration minimization 

 

Figure 3b: SNH profile MNLMPC soluble material concentration minimization 
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Figure 3c: SND profile MNLMPC soluble material concentration minimization 

 

Figure 3d: XBH, XBA, XND profile MNLMPC soluble material concentration minimization 

 

Figure 3e: dilution rate MNLMPC soluble material concentration minimization 

 

Figure 3f: dilution rate (with Savitzky Golay filter) MNLMPC soluble material concentration minimization 

In the third case, In the second case, the variables representing the soluble 

materials (soluble nitrate and nitrite nitrogen, soluble ammonium nitrogen, 

and soluble biodegradable organic material) and the particulate variables 

(active heterotrophic particulate mass, active autotrophic particulate mass,  

and particulate biodegradable organic nitrogen) were clubbed together as 

totalS  and totalX  . In this case, 

0 0

( ), ( )
i f i f

i i

t t t t

total i total i

t t

S t X t
= =

= =

   was 

minimized individually, leading to values of 10.8079 and 0.01647. The 
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overall optimal control problem will involve the minimization of 

0 0

2 2( ( ) 10.8079) ( ( ) 0.01647)
i f i f

i i

t t t t

total i total i

t t

S t X t
= =

= =

− + −   was 

minimized subject to the equations governing the model. This led to a value 

of zero (the Utopia solution). The various concentration profiles for this 

MNLMPC calculation are shown in Figs. 4a-4d.  The obtained control profile 

of s exhibited noise (Fig. 4e).  This was remedied using the Savitzky-Golay 

Filter. The smoothed-out version of this profile is shown in Fig.4f.  

In all the cases, the MNLMPC calculations converged to the Utopia solution, 

validating the analysis of Sridhar (2024), which showed that the presence of 

a limit or branch point enables the MNLMPC calculations to reach the best 

possible (Utopia) solution.  

 

Figure 4a: SNO profile MNLMPC X and S concentration minimization 

 

Figure 4b: SNH profile MNLMPC X and S concentration minimization 

 

Figure 4c: SND profile MNLMPC X and S concentration minimization 

 

Figure 4d: XBH, XBA, XND profile MNLMPC X and S concentration minimization 
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Figure 4e: dilution rate MNLMPC X and S concentration minimization 

 

Figure 4f: dilution rate (with Savitzky Golay filter) MNLMPC X and S concentration minimization 

Conclusions  

Bifurcation analysis and Multiobjective nonlinear model predictive control 

calculations were performed on the activated sludge model (ASM1). The 

bifurcation analysis revealed the existence of branch points.  The branch 

points (which produced multiple steady-state solutions originating from a 

singular point) are very beneficial as they caused the multiojective nonlinear 

model predictive calculations to converge to the Utopia point (the best 

possible solution) in both models. A combination of bifurcation analysis and 

multiobjective nonlinear model predictive control for the activated sludge 

model (ASM1) is the main contribution of this paper.  
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