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Abstract 

Cardiovascular diseases (CVDs) are a major global health concern, necessitating efficient and reliable diagnostic 

methods. Electrocardiograms (ECGs) play a vital role in detecting cardiac abnormalities, but their manual 

interpretation by experts can be labor-intensive and subject to variability. In this study, we propose a novel approach 

for ECG classification using convolutional neural networks (CNNs) and transfer learning. The model was first pre-

trained on a dataset of aggregated ECG signals to capture global patterns and subsequently fine-tuned on individual 

patient data to tailor predictions to specific characteristics.  We utilized the MIT-BIH Arrhythmia Database for 

training and evaluation. Individual patient-specific models achieved an average balanced accuracy of 94.6%, while 

transfer learning-based models reached 93.5%. While individual models demonstrated marginally superior 

performance, transfer learning offered significant advantages in data-scarce scenarios by leveraging pre-trained 

knowledge. Our findings highlight the potential of transfer learning in addressing challenges such as data scarcity 

and inter-patient variability.  
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1.Introduction 

Cardiovascular diseases (CVDs) are the leading cause of mortality globally, 

necessitating efficient diagnostic tools for early detection and management. 

Electrocardiograms (ECGs) are non-invasive, cost-effective instruments 

widely used to monitor and diagnose heart conditions such as arrhythmias 

and myocardial infarction. However, manual interpretation of ECG signals 

by medical professionals is labor-intensive and prone to human error, 

underscoring the importance of automated ECG classification systems [1]. 

Recent advancements in machine learning (ML) and deep learning (DL) 

have revolutionized the field of medical signal processing, enabling highly 

accurate and efficient ECG classification [2]. Convolutional Neural 

Networks (CNNs), in particular, have emerged as the state-of-the-art method 

for analyzing ECG signals due to their capability to learn hierarchical 

features from raw data [3,14]. Despite their potential, training CNNs for 

ECG classification presents challenges, including limited annotated datasets, 

inter-patient variability, and class imbalance caused by the rarity of 

pathological events [4]. Transfer learning offers a promising solution to these 

challenges by  leveraging pre-trained models to adapt to specific tasks with 

limited data [5,15]. This approach is particularly advantageous for 

personalized medicine, where ECG signals exhibit patient-specific 

characteristics [6]. The MIT-BIH Arrhythmia Database [7], a widely used 

benchmark dataset for ECG analysis, provides an excellent foundation for 

exploring the efficacy of transfer learning in classifying pathological 

heartbeats. In this study, we propose a two-stage approach for ECG 

classification: pre-training a generic CNN on a multi-patient dataset and fine-

tuning individual models for specific patients. Our objectives are to evaluate 

the efficacy of transfer learning in capturing generic and patient-specific 

features and to compare its performance with traditional patient-specific 

classifiers. 

2.Methods 

The methodology involves preprocessing ECG signals followed by their 

fusion into a triple-channel input. These images are then fed into a CNN for 

classifying pathological heartbeats (Figure 1). 
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Figure 1: System architecture for ECG classification using GAF, MTF, and RP transformations with a CNN-based triple-channel approach. 

3.1 Dataset 

The dataset utilized in this study is the MIT-BIH Arrhythmia Database [1], 

a benchmark dataset widely used for ECG analysis. It comprises 48 half-

hour, two-channel ECG recordings sampled at 360 Hz. Each recording is 

accompanied by expert annotations categorizing beats into various classes. 

For this study, the data was pre-processed to normalize signals to the range 

(0,1), filter noise with a Butterworth bandpass filter (0.4–30 Hz), and 

segment into 1-second windows (360 samples). Each window was labeled as  

normal (0) or abnormal (1). The final dataset consisted of 49,245 labeled 

samples from 29 patients, after excluding imbalanced samples. 

3.2 CNN Architecture 

A 1D CNN was designed for binary classification of ECG windows. The 

model comprises four convolutional blocks with 32 kernels (5×5), max 

pooling (5×5), and ReLU activation. Residual connections inspired by 

ResNet [2] enhance feature propagation. The flattened output of the 

convolutional layers feeds into a dense layer with 160 units, followed by a 

sigmoid-activated binary classifier (Figure 2). 

 
Figure 2: The architecture of our CNN 

3.3 Training  

This study employed a two-stage training. Pre-training, generic CNN was 

pre-trained on the aggregated dataset from all patients. The model optimized 

binary cross-entropy (BCE) loss using the Adam optimizer with a learning 

rate of 0.001 and weight decay of 0.0001. Fine-tuning, the pre-trained model 

was fine-tuned for each patient individually to capture personalized ECG 

characteristics (Table 1). Hyperparameters were optimized using grid search 

for each patient.  

𝐻𝑝(𝑞) = −
1

𝑁
∑[𝑦𝑖 . 𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖). 𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖))]

𝑁

𝑖=1

 

where yi is the true label and p(yi) is the predicted probability. 

Patient Batch Size Learning rate Weighted Sampling Balanced Accuracy 

100 4 0.001 True 0.713 

102 4 0.001 True 1.00 

104 4 0.001 False 0.993 

105 4 0.001 False 0.996 

106 16 0.001 True 0.985 

108 32 0.01 True 0.776 

114 4 0.001 False 0.955 

116 16 0.001 True 0.932 

119 4 0.01 True 1.00 

200 32 0.01 True 0.962 

202 16 0.001 True 0.903 

201 32 0.001 True 0.925 

203 4 0.001 True 0.966 
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205 32 0.001 True 0.958 

208 4 0.01 False 0.977 

209 4 0.001 False 0.950 

212 16 0.001 True 1.00 

210 16 0.001 True 0.943 

213 4 0.001 True 0.919 

215 4 0.001 True 100 

217 4 0.001 True 0.998 

219 16 0.01 True 0.965 

220 16 0.01 True 0.955 

222 32 0.001 False 0.897 

221 32 0.001 False 0.994 

228 16 0.001 True 0.986 

223 16 0.001 True 0.916 

231 4 0.001 True 0.996 

233 32 0.001 False 0.988 

Table 1: This Table provides the optimal hyperparameters for each patient, found through grid search based on the balanced accuracy on the validation set. 

4. Experimental Setup 

4.1 Tasks and Dataset Splitting 

The dataset was split into training, validation, and test sets using stratified 

sampling to preserve the class ratio. An 80-20 split was used for training-

validation and test sets, followed by an 80-20 split of the training-validation 

set to create training and validation subsets. Weighted sampling was applied 

to handle class imbalance, ensuring the model adequately learned both 

normal and abnormal classes. 

4.2 CNN Architecture and Parameters 

The proposed CNN model (Figure 2) accepts 1×128 pulse windows as input. 

It consists of convolutional blocks with 32 kernels (5×5), max pooling, skip 

connections, and ReLU activation. The architecture concludes with a dense 

layer (160 units) and a sigmoid-activated output layer for binary 

classification. The architecture has 67,169 trainable parameters, suitable for 

the dataset's size and complexity. 

4.3 Training Protocols 

The CNN was pre-trained on the aggregated dataset from all patients to learn 

generic features. The Adam optimizer was employed with a learning rate of 

0.001, weight decay of 0.0001, and a batch size of 32. The training proceeded 

for 30 epochs, and the model with the lowest validation loss was retained. 

Fine-tuning: The pre-trained CNN was fine-tuned individually for each 

patient using the same architecture and hyperparameters optimized via grid 

search (Table 2). 

Parameter Range 

Learning Rate {0.001, 0.01, 0.1} 

Batch Size {4, 16, 32} 

Weighted Sampling {True, False} 

Table 1: Parameter Range for Grid Search in Individual Classifiers 

4.4 Evaluation Metrics 

Balanced accuracy was used to evaluate model performance. It is robust 

against class imbalance and calculated as: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

5. Results 

5.1 Pre-training Performance 

The pre-trained CNN model demonstrated effective learning on the 

aggregated dataset. (Figure 2) shows the training and validation loss curves, 

with the lowest validation loss achieved at epoch 16. This model provided a 

robust starting point for patient-specific fine-tuning (Figure 3). 
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Figure 3: Training and validation loss curves over epochs for the pre-training phase. 

5.2 Individual Classifiers 

Baseline classifiers trained on individual patient data achieved an average 

balanced accuracy of 94.6% on the test set. (Figure 4) presents a histogram 

of the balanced accuracy for all individual classifiers, where 18 of 29  

classifiers scored above 95%, and only one patient’s model performed below 

75%. Figure 4 shows the training and validation loss and balanced accuracy 

curves for patient 203, indicating stable convergence and high performance 

(Figure 5). 

 

Figure 4: Histogram of the balanced accuracy of the individual classifiers on the test set. 

 

Figure 5. Loss curve (left) and balanced accuracy (right) plots over epochs for patient 203 for the individual classifier. 

5.3 Transfer Learning 

Fine-tuned models, leveraging pre-trained weights, achieved an average 

balanced accuracy of 93.5%, slightly below the individual classifiers. (Figure 

6) shows the histogram of balanced accuracies for fine-tuned models, where 

16 of 29 classifiers achieved above 95%. (Figure 7) compares the balanced 

accuracies of individual and fine-tuned classifiers, highlighting that fine-

tuning boosted performance for certain patients but underperformed in others 

(Figure 8). 
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Figure 6: Histogram of the balanced accuracy of the fine-tuned classifiers on the test set. 

 
Figure 7: Loss curve (left) and balanced accuracy (right) plots over epochs for patient 203 for the fine-tuned classifier. 

 
Figure 8: Bar plot of the balanced accuracy for each patient on the test set (individuals, fine-tuning). 

The results indicate that while individual classifiers marginally outperform 

fine-tuned models on average, transfer learning is beneficial in scenarios 

with limited data. Hyperparameter optimization specific to fine-tuning could 

further enhance performance. 

6. Discussion 

The results of this study highlight the effectiveness of CNNs in classifying 

ECG signals into normal and abnormal categories. Individual classifiers 

achieved higher average balanced accuracy compared to fine-tuned transfer 

learning models. This suggests that patient-specific models are adept at 

capturing the unique characteristics of individual ECG signals. However, the 

transfer learning approach demonstrated competitive performance, with 

particular benefits for patients with limited training data. The slightly lower 

accuracy of fine-tuned models may be attributed to the reuse of 

hyperparameters optimized for individual classifiers during fine-tuning. 

Fine-tuning-specific hyperparameter tuning could address this limitation and 

enhance model performance. Additionally, the performance variation among  

patients reflects the inter-patient variability in ECG morphology, a known 

challenge in ECG classification. While the study primarily focused on binary 

classification, the methodology could be extended to multi-class 

classification of specific arrhythmia types. Future work could also explore 

integrating data augmentation techniques, such as adding noise or varying 

sampling rates, to increase the robustness of the models. Overall, this 

research demonstrates the potential of transfer learning in ECG analysis and 

its utility in addressing the challenges of data scarcity and variability. 

7. Conclusion 

This study demonstrates the efficacy of CNNs for ECG classification and 

evaluates the impact of transfer learning in a binary classification task. 

Individual classifiers, tailored to specific patients, achieved the highest 

balanced accuracy, averaging 94.6%. Transfer learning, while slightly less 

accurate at 93.5%, provided a scalable solution for data-scarce scenarios. The 

pre-training phase effectively captured global ECG patterns, enabling 

transfer learning models to adapt to individual patient data. While individual 
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classifiers had a slight edge in performance, transfer learning proved 

advantageous for patients with limited data, highlighting its potential for 

practical applications. Future research should focus on optimizing 

hyperparameters specific to fine-tuning and incorporating multi-class 

classification. Expanding the dataset by integrating additional sources or 

applying advanced data augmentation could further improve model 

robustness. These advancements will enhance the utility of AI-driven 

solutions in personalized healthcare, offering scalable and accurate 

diagnostic support in real-world settings. 
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