Research Article

Theoretical investigation on Friedel–Crafts reaction followed by rear-rangement/aromatization or ring-opening delivering benzoheterocycle and polycyclic alcohol, biaryl carboxylic acid

Nan Lu* and Chengxia Miao

College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China.

*Corresponding Author: Nan Lu, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China.

Received Date: September 16, 2024 | Accepted Date: September 30, 2024 | Published Date: October 10, 2024

Citation: Nan Lu and Chengxia Miao, (2024), Theoretical investigation on Friedel–Crafts reaction followed by rear-rangement/aromatization or ring-opening delivering benzoheterocycle and polycyclic alcohol, biaryl carboxylic acid, *International Journal of Clinical Case Reports and Reviews*, 19(2); **DOI:**10.31579/2690-4861/542

Copyright: © 2024, Nan Lu. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract:

Our DFT calculations provide the first theoretical investigation on CF3SO3H-promoted [1,5]Friedel–Crafts of 2-aryoxy-1,3-indandione and base-facilitated [1,6]Friedel–Crafts of 1,3-dicarbonyl. An intramolecular [1,5]Friedel–Crafts addition took place by activating carbonyl through H bridge with CF₃SO₃H. The resulting tertiary alcohol underwent dehydration producing reactive carbocation, which instigated a cascade of carbox-yl group formation, ring-opening via C–C bond dissociation and C=C bond formation realizing aromatization. The product 3-aryl-2-benzo was yielded with recovered CF₃SO₃H. The electron-rich phenoxy group was deprotonated by HO- forming water. The initial nucleophilic addition to spatial-adjacent carbonyl afforded dieneone. It isomerized to the first product polycyclic alcohol. Then carboxylation occurred via hydroxyl shift followed by ring-opening aromatization to the second product biaryl carboxylic acid. The positive solvation effect is suggested by decreased absolute and activation energies in solution compared with in gas. These results are supported by Multiwfn analysis on FMO composition of specific TSs, and MBO value of vital bonding, breaking.

Key words: biaryl carboxylic acid; friedel-crafts; aromatization; ring-opening; benzoheterocycle

Introduction

As privileged structural components in biologically active compounds, the benzofuran and indole motifs are important in pharmaceutical science and drug industry due to versatile biological properties and chemical activities [1]. In this field, the benzofuran derivatives are especially significant as potential therapeutic agents. For instance, Shang researched the antioxidant activity of viniferifuran [2]. Song discovered aromatic polyketides from deep-sea cold-seep mussel associated endozoic fungus talaromyces minioluteus CS-138 [3]. Cao obtained cytotoxic alkaloids from micromelum integerrimum [4]. However, traditional approaches often require multistep or complex reaction condition involving cascade reaction with a-imino Gold carbenes and Pd-catalyzed asymmetric Larock indole synthesis [5,6]. There fore the intramolecular C-N construction techniques offer efficient and sustainable routes [7,8] such as Wang's iron-catalyzed intramolecular C-H amination and He's Palladium-catalyzed enantioselective cacchi reaction for synthesis of N-H carbazoles and axially chiral 2,3-disubstituted indoles [9,10].

On the other, biaryl carboxylic acids are also key structural motifs in natural products for synthesis of axially chiral compounds. Biaryl lactone

was used for derivation of potential antimycotic agents against Candida strains [11]. In addition, binaphthyl scaffold like MeO-BINA-Cox is a class of versatile structure in asymmetric C-H functionalization [12]. Li prepared optically active 2,2'-Dibromo-6,6'-diiodo-1,1'-biphenyl as powerful precursor for modular synthesis of functionalized atropisomers [13]. Wei realized Fe-catalyzed difunctionalization of aryl titanates enabled by Fe/Ti synergism [14]. Linde developed atroposelective brominations to access chiral biaryl scaffolds applying high-valent Pdcatalysis [15]. Ansari utilized trichloromethyl carbanion in aqueous micelles to access carboxylic Acids from (Hetero)aryl halides [16]. Many efforts have been dedicated to these structures such as Palladium/norbornene-catalyzed decarbonylative difunctionalization of thioesters [17]. Despite with achievements of photoinduced protocol for aerobic oxidation of aldehydes to carboxylic acids, claisen approach to 4'-Ed4T and Palladium-catalyzed C-H ortho arylation of benzoic acids with diaryliodonium salt [18-20]. Some limitations still hampered owing to the requirement of prefunctionalization.

Tong found phosphine-catalyzed (4 + 2) annulations of δ -acetoxy allenoates and ketones to construct 1,3-cyclohexadienes [21]. Aspired by this, Liu developed [1,6]-type Friedel-Crafts reaction resulting in polycyclic alcohol then transformed into biaryl carboxylic acids through ring-opening rearrangement [22]. The 1,3-dicarbonyls were used to accomplish selective C-C bond formation previously [23,24]. One of the carbonyl groups is integrated into product structure. A recent progress constrained Friedel-Crafts [1,5]-type was reaction/rearrangement/aromatization process to synthesize 2substituted-3-aryl benzofuran from easily available 2-aryoxy-1,3indandione [25]. Although a range of benzoheterocycles were yielded, many problems still puzzled and there was no report about detailed mechanistic study explaining the promotion of CF3SO3H as Bronsted acid (BA). How the reactive carbocation instigated cascade C-C bond dissociation and C=C bond formation? Why base was necessary for nucleophilic addition of electron-rich phenoxy group to spatial-adjacent carbonyl in generation of dieneone? What's specific process of ringopening rearrangement and aromatization? To solve these questions in experiment, an in-depth theoretical study was necessary for this strategy also focusing on the comparison of [1,6]-, [1,5]-type Friedel-Crafts and excellent regio-, diastereoselectivity.

2 Computational details

Optimized structures were obtained at M06-2X/6-31G(d) level of theory with GAUSSIAN09 [26]. In tests of popular DFT methods [27], M06-2X functional attained smaller standard deviation of difference between calculated value and experimental value in geometries than B3LYP including Becke's three-parameter hybrid functional combined with Lee-Yang-Parr correction for correlation [28,29]. The best compromise between accuracy and time consumption was provided with 6-31G(d) basis set on energy calculations. Also, M06-2X functional was found to give relatively accurate results for catalysed enantioselective (4 + 3). concerted [4 + 2], stepwise (2 + 2) cycloaddition and catalysed Diels-Alder reactions [30,31]. Together with the best performance on noncovalent interaction, M06-2X functional is believed to be suitable for this system [32-34]. The nature of each structure was verified by performing harmonic vibrational frequency calculations. Intrinsic reaction coordinate (IRC) calculations were examined to confirm the right connections among key transition-states and corresponding reactants and products. Harmonic frequency calculations were carried out at the M062X/6-31G(d) level to gain zero-point vibrational energy (ZPVE) and thermodynamic corrections at 353 K and 1 atm for each structure in acetonitrile.

The solvation-corrected free energies were obtained at the M06-2X/6-311++G(d,p) level by using integral equation formalism polarizable continuum model (IEFPCM) in Truhlar's "density" solvation model [35-39] on the M06-2X/6-31G(d)-optimized geometries. As an efficient method obtaining bond and lone pair of a molecule from modern ab initio wave functions, NBO procedure was performed with Natural bond orbital (NBO3.1) to characterize electronic properties and bonding orbital interactions [40-42]. The wave function analysis was provided using Multiwfn_3.7_dev package [43] including research on frontier molecular orbital (FMO) and Mayer bond order (MBO).

3 Results and Discussion

The mechanism was explored for (a) CF₃SO₃H-promoted [1,5] Friedel-Crafts of 2-aryoxy-1,3-indandione 1 leading to 2-substituted-3aryl benzofuran 2; (b) Base-facilitated [1,6]Friedel-Crafts of 1,3dicarbonyl I resulting in polycyclic alcohol 3 then transformed into biaryl carboxylic acid 4 (Scheme 1). Illustrated by black arrow of Scheme 2a, an intramolecular [1,5]Friedel-Crafts addition of 1,3-indandione 1 took place by activating carbonyl through H bridge with CF₃SO₃H as Bronsted acid. Then the resulting tertiary alcohol in3 underwent dehydration assisted by CF₃SO₃H to produce reactive carbocation in4, which then instigated a cascade of carboxyl group formation, ring-opening via C-C bond dissociation and C=C bond formation realizing aromatization. The final product 3-aryl-2-benzo 2 was yielded binding recovered CF₃SO₃H. Shown by black arrow of Scheme 2b, the electron-rich phenoxy group was deprotonated under the catalysis of base HO⁻ forming water. The initial nucleophilic addition underwent with spatial-adjacent carbonyl resulting in dieneone II after removal of HO⁻. Subsequently, II isomerized to the first product polycyclic alcohol 3, from which carboxylation proceeds via hydroxyl shift rearrangement followed by ring-opening aromatization leading to the second product biaryl carboxylic acid 4. The schematic structures of optimized TSs in Scheme 2 were listed by Figure 1. The activation energy was shown in Table 1 for all steps. Supplementary Table S1, Table S2 provided the relative energies of all stationary points. According to experiment, the Gibbs free energies in acetonitrile solution phase are discussed here.

Scheme 2: Proposed reaction mechanism of TS is named according to the two intermediates it connects.

Species	ΔG_{gas}	$\Delta G_{sol(CH3CN)}$
1	0.00	0.00
2	-25.36	-29.57
1+CF3SO3H	0.00	0.00
in1	-16.53	-4.90
ts-in12	13.57	11.25
in2	-28.20	-16.00
in3	-1.71	7.71
ts-in34	19.91	14.22
in4	6.93	-0.52
ts-in45	13.12	0.54
in5	-39.98	-31.98
Species	ΔG_{gas}	$\Delta G_{sol(CH3CN)}$
I+OH	0.00	0.00
i1	-58.08	-10.32
ts-i12	-48.44	-1.15
i2	-62.84	-14.39
Ι	0.00	0.00
П	11.20	1.36
ts-II3	44.52	30.43
3	-2.96	-9.64
ts-3III	22.10	11.65
III	8.95	3.38
ts-III4	21.23	13.19
4	-20.81	-26.93

Table S1. Calculated relative energies (all in kcal mol⁻¹, relative to isolated species) for the ZPE-corrected Gibbs free energies (ΔG_{gas}), Gibbs free energies for all species in solution phase (ΔG_{sol}) at 353 K by M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) method and difference between absolute energy.

TS	$\Delta \mathrm{G}^{ eq}_{\mathrm{gas}}$	$\Delta { m G}^{ eq}{ m sol}$
ts-in12 (360i)	30.1	16.1
ts-in34 (292i)	21.6	6.5
ts-in45 (243i)	6.2	1.1
ts-i12 (248i)	9.6	9.2
ts-II3 (1812i)	33.3	29.1
ts-3III (377i)	25.1	21.3
ts-III4 (100i)	12.3	9.8

Table S2. The activation energy (local barrier) (in kcal mol^{-1}) of all reactions in the gas, solution phase calculated with M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) method.

TS	$\Delta \mathrm{G}^{\neq}{}_{\mathrm{gas}}$	$\Delta { m G}^{ eq}_{ m sol}$
ts-in12	30.1	16.2
ts-in34	21.6	6.5
ts-in45	6.2	1.1
ts-i12	9.6	9.2
ts-II3	33.3	29.1
ts-3III	25.1	21.3
ts-III4	12.3	9.8

Table 1 The activation energy (in kcal mol⁻¹) of all reactions in gas and solvent

(b)

3.1 [1,5] Friedel-Crafts/rearrangement/aromatization

The initial complex is located as **in1** involving H bond stabilization between CF₃SO₃H and carbonyl of **1**. An intramolecular [1,5]Friedel–Crafts addition took place via **ts-in12** in step 1 with the activation energy of 16.1 kcal mol⁻¹ relative to starting point **in1** exothermic by -11.1 kcal mol⁻¹ producing tertiary alcohol **in2** (black dash line of Figure 1a). The transition vector includes dual proton transfer C1…H1…O4, O4…H2…O1, resultant stretching of C2-O1 double bond to single one and the slightly delayed nucleophilic addition of C1 to C2 (1.0, 1.5, 1.4, 1. 1, 1.3, 1.96 Å) (Figure S1a). Obviously, the driving force is attributed by H bridge from CF₃SO₃H via simultaneously activating nucleophilic C1 and carbonyl C2=O1. Once C1-C2 is bonded, carbonyl becomes hydroxyl O1H2 in the new five membered ring of **in2**, which transformed to **in3** more reactive with relative energy increased by 23.7 kcal mol⁻¹ ready to initiate next step.

Then assisted by CF₃SO₃H, the resulting tertiary alcohol **in3** undergoes dehydration via **ts-in34** as step 2 with activation energy of 6.5 kcal mol⁻¹ endothermic by 4.4 kcal mol⁻¹ producing reactive carbocation **in4**. The transition vector suggests that the obtained proton H1 from C1 in previous step 1 is handed over to hydroxyl O1H2 by O4 of CF₃SO₃H to assemble water molecule H1-O1H2. This causes the breaking of C2-O1 single bond concertedly (1.45, 1.05, 2.05 Å) (Figure S1b). The leaving of O1H2 from C2 makes it positive and sp2 hybrid in carbocation **in4**, where there is still O4…H1O1 H bonding.

At last, a cascade rearrangement/aromatization takes place via **ts-in45** in subsequent step 3 with low activation energy of 1.1 kcal mol⁻¹ affording **in5** exothermic by -27.1 kcal mol⁻¹. The transition vector is complicated contains a series of atomic motion. On one hand, the water returns H1 to O4 of CF₃SO₃ faciliting its recovery via O1…H1…O4 (1.09, 1.37 Å). The hydroxyl O1H2 is thus approaching another carbonyl C5=O2 via O1…C5 (1.72 Å) forming carboxyl group. On the other, C3–C5 bond is dissociated inducing ring-opening and C2=C3 double bond formation realizing aromatization (1.74, 1.45 Å) (Figure S1c). The final **in5** is rather stable combining recovered CF₃SO₃H and product 3-aryl benzofuran involving carboxyl moiety. Ultimately, the [1,5]Friedel–Crafts in step 1 is determined to be rate-limiting for CF₃SO₃H-promopted whole process.

3.2 [1,6] Friedel–Crafts/isomerization/carboxylation/ring-opening aromatization

As a comparison, [1,6]Friedel-Crafts was also explored from 1,3dicarbonyl I facilitated by base HO⁻ (black dash line of Figure 1b). In initial **i1**, the electron-rich phenoxy group was deprotonated by additional HO⁻ forming water H1-O2H2, which activated spatial-adjacent carbonyl via H bonding. Therefore, the nucleophilic addition from C1 to C6 occurs readily via **ts-i12** in step 1 with activation energy of 9.2 kcal mol⁻¹ exothermic by -4.1 kcal mol⁻¹ resulting in **i2** delivering dieneone intermediate **II** after removal of HO⁻. The transition vector corresponds to the approaching of H1 to O3, elongation of carbonyl C6-O3 from double bond to single and C1-C6 linkage (1.6, 1.4, 1.96 Å) (Figure S1d). The typical C1-C6 bond gives new six membered ring in stable **i2**.

Without HO⁻, **II** turns to be more reactive with higher relative energy (1.4 kcal mol⁻¹) than **I**. Subsequently, the isomerization of **II** in step 2 happens via **ts-II3** with activation energy of 29.1 kcal mol⁻¹ exothermic by -9.7 kcal mol⁻¹ generating **3** (red dash line of Figure 1b). The transition vector reveals detailed atomic motion comprising proton H3 transfer from C1 to O1 and the resultant stretching of carbonyl C7-O1 from double to single (1.73, 1.31, 1.29 Å) (Figure S1e). As the first product polycyclic alcohol, **3** involves the recovered phenolic hydroxyl group O1H3.

In next step 3, the rearrangement via hydroxyl shift proceeds via **ts-3III** with activation energy of 21.3 kcal mol⁻¹ yielding cation **III** stabilized by two conjugated phenyl ring endothermic by 3.4 kcal mol⁻¹. This process is illustrated according to the transition vector composed of hydroxyl O3H1 leaving from C6 to C8 that is C6…O3 breaking and C8…O3 bonding (2.34, 1.84 Å) (Figure S1f). The outcome not only includes formation of reactive cation at C6 but carboxylation producing new carboxyl group O4=C8-O3H1.

From reactive **III**, the final ring-opening aromatization is easy to be initiate via **ts-III4** in step 4 with a low barrier of only 9.8 kcal mol⁻¹ exothermic by -26.9 kcal mol⁻¹ affording **4** as the second product biaryl carboxylic acid. This step is quite favorable both from kinetics and thermodynamics. Demonstrated by the transition vector, the ring-opening is accomplished via C5…C8 cleavage and aromatization through C5-C6 shortened from single bond to double (1.75, 1.44 Å) (Figure S1g). Comparatively, the isomerization of dieneone in step 2 is determined to be rate-limiting for base-facilitated [1,6]Friedel–Crafts case.

To highlight the idea of feasibility for changes in electron density and not molecular orbital interactions are responsible of the reactivity of organic molecules, quantum chemical tool Multiwfn was applied to analyze of electron density such as MBO results of bonding atoms and contribution of atomic orbital to HOMO of typical TSs (Table S3, Figure S2). These results all confirm the above analysis.

	O4···H2	H2…O1	C1…C2	C2…O1	
ts-in12	0.23	0.45	0.45	1.29	
	O4…H1	H1…O1	C2…O1		
ts-in34	0.22	0.48	0.28		
	01…H1	H1…O4	01…C5	C5…C3	C3····C2
ts-in45	0.43	0.25	0.45	0.64	1.27
	H1…O3	C6…O3	C1…C6		
ts-i12	0.17	1.37	0.50		
	С1…Н3	H3…O1	C7…O1		
ts-II3	0.39	0.39	1.34		
	C6…O3	C8····O3			
ts-3III	0.23	0.43			
	C5…C8	C5…C6			
ts-III4	1.24	0.51			

 Table S3. Mayer bond order (MBO) of typical TSs

Figure S1. Evolution of bond lengths along the IRC for (a) ts-in12 (b) ts-in34 (c) ts-in45 (d) ts-i12 (e) ts-III3 (f) ts-3III (g) ts-III4 at M06-2X/6-311++G(d,p) level.

Figure S2. Highest Occupied Molecular Orbital (HOMO) of typical TSs. Different colors are used to identify the phase of the wave functions.

4 Conclusions

Our DFT calculations provide the first theoretical investigation on CF3SO3H-promoted [1,5]Friedel-Crafts of 2-aryoxy-1,3-indandione leading to 2-substituted-3-aryl benzofuran and base-facilitated [1,6]Friedel-Crafts of 1,3-dicarbonyl resulting in polycyclic alcohol then transformed into biaryl carboxylic acid. For the former, an intramolecular [1,5]Friedel-Crafts addition of 1,3-indandione took place by activating carbonyl through H bridge with CF₃SO₃H. The resulting tertiary alcohol underwent dehydration assisted by CF3SO3H producing reactive carbocation, which then instigated a cascade of carboxyl group formation, ring-opening via C-C bond dissociation and C=C bond formation realizing aromatization. The final product 3-aryl-2-benzo was yielded binding recovered CF₃SO₃H. For the latter, the electron-rich phenoxy group was deprotonated under the catalysis of HO⁻ forming water. The initial nucleophilic addition underwent with spatial-adjacent carbonyl affording dieneone after removal of HO⁻. Subsequently, dieneone isomerized to the first product polycyclic alcohol, from which carboxylation proceeds via hydroxyl shift rearrangement followed by ring-opening aromatization leading to the second product biaryl carboxylic acid. Comparatively, [1,5]Friedel-Crafts in step 1 is determined to be rate-limiting for CF₃SO₃H-promopted process. While the isomerization of dieneone in step 2 is rate-limiting for base-facilitated [1,6]Friedel-Crafts case. The positive solvation effect is suggested by decreased absolute and activation energies in acetonitrile solution compared with in gas. These results are supported by Multiwfn analysis on FMO composition of specific TSs, and MBO value of vital bonding, breaking.

Electronic Supplementary Material

Supplementary data available: [Computation information and cartesian coordinates of stationary points; Calculated relative energies for the ZPE-corrected Gibbs free energies (ΔG_{gas}), and Gibbs free energies (ΔG_{sol}) for all species in solution phase at 353 K.]

Author contributions: Conceptualization, Nan Lu; Methodology, Nan Lu; Software, Nan Lu; Validation, Nan Lu; Formal Analysis, Nan Lu; Investigation, Nan Lu; Resources, Nan Lu; Data Curation, Nan Lu; Writing-Original Draft Preparation, Nan Lu; Writing-Review & Editing, Nan Lu; Visualization, Nan Lu; Supervision, Chengxia Miao; Project Administration, Chengxia Miao; Funding Acquisition, Chengxia Miao. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China (21972079) and Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, P.R. China.

Conflict of interest: The authors declare no conflict of interest.

References

- 1. Heravi, M. M.; M Zadsirjan, V. (2015). Recent Advances in the Synthesis of Benzo[b]furans. In Advances in Heterocyclic Chemistry, 117, 261–376.
- 2. Shang, Y.; Zhou, H.; Li, X.; Zhou, J.; Chen, K. (2019). Theoretical studies on the antioxidant activity of viniferifuran. *New J. Chem.* 43, 15736–15742.
- Song, Q.; Yang, S. Q.; Li, X. M.; Hu, X. Y.; Li, X. et al. (2022). Aromatic Polyketides from the Deep-Sea Cold-Seep Mussel Asso-ciated Endozoic Fungus Talaromyces minioluteus CS-138. Mar. *Drugs.* 20, 529–538.
- Cao, N. K.; Chen, Y. M.; Jiang, Y.; Li, J.; Tu, P. F. et al. (2020). Isolation and structure characterization of cytotoxic alkaloids from Micromelum integerrimum. *Phytochemistry*, 178, No. 112463.
- Sun, Q.; Hüßler, C.; Kahle, J.; Mackenroth, A. V.; Rudolph, M. et al. (2024). Cascade Reactions of Ar-yl-Substituted Terminal Alkynes Involving in Situ-Generated α-Imino Gold Carbenes. Angew. *Chem. Int. Ed.* 63, No. e2023137.

- Zhang, G.; Yang, B.; Yang, J.; Zhang, J. (2024). Pd-Catalyzed Asymmetric Larock Indole Synthesis to Access Axially Chiral N-Arylindoles. *J. Am. Chem.* Soc. 146, 5493–5501.
- Xie, F.; Sun, Y.; Song, H.; Zhao, J.; Zhang, Z. et al. (2021). Cascade Reaction of 2-Naphthols and Azirines: One-Pot Synthe-sis of C-3 Naphthol-Substituted Benzo[e]indoles. J. Org. Chem. 86, 15631–15639.
- Mao, J.; Wang, Z.; Xu, X.; Liu, G.; Jiang, R. et al. (2019). Synthesis of Indoles through Domino Reactions of 2-Fluorotoluenes and Nitriles. *Angew. Chem.*, Int. Ed. 58, 11033–11038.
- 9. Wang, Z. L.; Zhang, Y. H.; Huang, J. Y.; Zhou, J.; Yu, Y. Q. et al. (2023). Iron-catalyzed intramolecular C–H amination for the synthesis of N–H carbazoles and indoles. *Green Chem.* 25, 4463–4468.
- He, Y. P.; Wu, Hu.; Wang, Q.; Zhu, J. (2020). Palladium-Catalyzed Enantioselective Cacchi Reaction: Asymmetric Synthesis of Axially Chi-ral 2,3-Disubstituted Indoles. Angew. Chem., *Int. Ed.* 59, 2105–2109.
- Chao, M.; Wang, F.; Xu, L. L.; Ju, Y. P.; Chen, Z. X. et al. (2021). Cerium Ammonium Nitrate-Mediated Access to Biaryl Lactones: Substrate Scopes and Mechanism Studies. J. Org. Chem. 86, 13371–13380.
- 12. Yue, Q.; Liu, B.; Liao, G.; Shi, B. F.(2022). Binaphthyl Scaffold: A Class of Versatile Structure in Asymmetric C–H Functionalization. *ACS Catal.* 12, 9359–9396.
- Li, Y. Y.; Duan, L. H.; Hong, B. Q.; Gu, Z. H. (2023). Preparation of Optically Active 2,2'-Dibromo-6,6'diiodo-1,1'-biphenyl: A Powerful Precursor for Modular Synthesis of Functionalized Atropisomers. *Chin. J. Chem.* 41, 3515–3520.
- Wei, Y. M.; Ma, X. D.; Wang, M. F.; Duan, X. F. (2023). Fe-Catalyzed Difunctionalization of Aryl Titanates Enabled by Fe/Ti Synergism. Org. Lett. 25, 2745–2749.
- Linde, S. T.; Corti, V.; Lauridsen, V. H.; Lamhauge, J. N.; Jørgensen, K. A. et al. (2023). Atroposelective brominations to access chiral biaryl scaffolds using highvalent Pd-catalysis. *Chem. Sci.* 14, 3676–3681.
- Ansari, T. N.; Sharma, S.; Hazra, S.; Hicks, F.; Leahy, D. K. et al. (2022). Trichloromethyl Carbanion in Aqueous Micelles: Mechanis-tic Insights and Access to Carboxylic Acids from (Hetero)aryl Halides. ACS Catal. 12, 15686–15695.
- Han, M. L.; Chen, J. J.; Xu, H.; Huang, Z. C.; Huang, W. et al. (2021). Palladi-um/Norbornene-Catalyzed Decarbonylative Difunctionalization of Thioesters. *JACS Au*, 1, 1877–1884.
- Xu, J.; Yue, X. G.; He, L.; Shen, J.; Ouyang, Y. et al. (2022). Photoinduced Protocol for Aerobic Oxidation of Aldehydes to Carboxylic Acids under Mild Conditions. ACS Sustain ,10, 14119–14125.
- Gallagher, W. P.; Deshpande, P. P.; Li, J.; Katipally, K.; Sausker, J. (2015). A Claisen Approach to 4'-Ed4T. J. Org. Lett. 17, 14–17.
- (a) Wu, Z. Q.; Chen, S.; Hu, C. X.; Li, Z. K.; Xiang, H. F. et al. (2013). Palladium-Catalyzed C H ortho Arylation of Benzoic Acids with Diaryliodonium Salts in Water. ChemCatChem. 5, 2839–2842.
- Zhang, Y. W.; Tong, X. F. (2017). Construction of Complex 1,3-Cyclohexadienes via Phosphine-Catalyzed (4+2) Annulations of δ-Acetoxy Allenoates and Ketones. Org. Lett. 19, 5462–5465.
- 22. Liu, S.; Cheng, L.; Liu, L. (2004). Synthesis of Biaryl Carboxylic Acids through a Cascade Suzuki–Miyaura Coupling/Friedel–Crafts Alkyl-ation/Lewis-Acid-

Catalyzed Rearrangement/Aromatization Process. Org. Lett. 26, 1902–1907.

- Liu, Q.; Liu, J. J.; Cheng, L.; Wang, D.; Liu, L. (2018). TEMPO promoted direct multi-functionalization of terminal alkynes with 2-oxindoles/benzofuran-2(3H)-one. Org. *Biomol. Chem.* 16, 5228–5231.
- Huang, H. Y.; Cheng, L.; Liu, J. J.; Wang, D.; Liu, L. et al. (2017). Transition-Metal-Free Alkynylation of 2-Oxindoles through Radi-cal–Radical Coupling. J. Org. Chem. 82, 2656–2663.
- 25. Liu, S.; Liu, Q.; Cheng, L.; Liu, L. (2024). Construction of 2-Substituted-3-aryl Benzofurans and Indoles through an Acid-Catalyzed Cascade Intramolecular Friedel-Crafts Reaction/Rearrangement/Aromatization Process. J. Org. Chem. 89, 11716-11726.
- 26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. (2010). Gaussian 09 (Revision B.01), Gaussian, Inc., Wallingford, CT.
- Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. (1994). Ab initio Calculation of Vibrational Absorption and Circular Di-chroism Spectra Using Density Functional Force Fields, *J. Phys. Chem.* 98, 11623-11627.
- Becke, A. D. (1996). Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 104, 1040-1046.
- 29. Lee, C. T.; Yang, W. T.; Parr, R. G. (1998). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.
- Li, X.; Kong, X.; Yang, S.; Meng, M.; Zhan, X. et al. (2019). Bifunctional Thiourea-Catalyzed Asymmetric Inverse-Electron-Demand Diels-Alder Reaction of Allyl Ketones and Vinyl 1,2-Diketones via Dienolate Intermediate, Org. Lett. 21, 1979-1983.
- 31. Krenske, E. H.; Houk, K. N.; Harmata, M. (2015). Computational Analysis of the Stereochemical Outcome in the Imidazolidinone-Catalyzed Enantioselective (4 + 3)-Cycloaddition Reaction, *J. Org. Chem.* 80, 744-750.
- 32. Lv, H.; Han, F.; Wang, N.; Lu, N.; Song, Z. et al. (2022). Ionic Liquid Catalyzed C-C Bond Formation for the Synthesis of Polysubstituted Olefins. *Eur. J. Org. Chem.* e202201222.
- 33. Zhuang, H.; Lu, N.; Ji, N.; Han, F.; Miao, C. (2021). Bu4NHSO4-Catalyzed Direct N-Allylation of Pyrazole and its Derivatives with Allylic Alcohols in Water: A Metal-free, Recyclable and Sustainable System. Advanced Synthesis & Catalysis, 363, 5461-5472.
- Lu, N.; Liang, H.; Qian, P.; Lan, X.; Miao, C. (2020). Theoretical investigation on the mechanism and enantioselectivity of organocatalytic asymmetric Povarov reactions of anilines and aldehydes. *Int. J. Quantum Chem.* 120, e26574.
- 35. Tapia, O. (1992). Solvent effect theories: Quantum and classical formalisms and their applications in chemistry and biochemistry. *J. Math. Chem.* 10, 139-181.
- Tomasi, J.; Persico, M. (1994). Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 94, 2027-2094.
- Simkin, B. Y.; Sheikhet, I. (1995). Quantum Chemical and Statistical Theory of Solutions—A Computational Approach, Ellis Horwood, London.
- Tomasi, J.; Mennucci, B.; Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chem. Rev, 105, 2999-3093.

Copy rights @ Nan Lu,

- Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. (2009). Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B, 113, 6378–6396.
- 40. Reed, A. E.; Weinstock, R. B.; Weinhold, F. (1985). Natural population analysis. J. Chem. Phys. 83, 735-746.
- 41. Reed, A. E.; Curtiss, L. A.; Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital donor-acceptor view point. *Chem. Rev.* 88, 899-926.
- 42. Foresman, J. B.; Frisch, A. (1996). Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian, Inc., Pittsburgh.
- 43. Lu, T.; Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* 33, 580-592.

This work is licensed under Creative Commons Attribution 4.0 License

Submit Manuscript

To Submit Your Article Click Here:

-

DOI:10.31579/2690-4861/542

- Ready to submit your research? Choose Auctores and benefit from:
 - ➢ fast, convenient online submission
 - > rigorous peer review by experienced research in your field
 - rapid publication on acceptance
 - > authors retain copyrights
 - > unique DOI for all articles
 - immediate, unrestricted online access

At Auctores, research is always in progress.

 $\label{eq:linear} Learn more \ \underline{https://auctoresonline.org/journals/international-journal-of-clinical-case-reports-and-reviews}$

Software: GAUSSIAN09

Level of Theory: M06-2X

Basis Set: 6-31G(d)

Geometry [Cartesian coordinates]:

Optimized Cartesian coordinates for ts-in12

Center	Atom	ic A	tomic	Coordinate	s (Angstroms)
Number	Nur	nber	Туре	X Y	Ζ
1	6	0	2.109828	0.975638	-0.366288
2	6	0	1.832608	0.448304	-1.728663
3	6	0	0.503797	0.031928	-1.823048
4	6	0	-0.217261	0.334465	-0.548292
5	8	0	-1.216647	1.144291	-0.685831
6	8	0	3.074779	1.578939	0.018778
7	6	0	2.685316	0.388854	-2.826607
8	6	0	2.178787	-0.121270	-4.016650
9	6	0	0.844070	-0.539377	-4.108675
10	6	0	-0.014883	-0.454584	-3.016467
11	1	0	3.710212	0.735565	-2.739536
12	1	0	2.818715	-0.189376	-4.890582
13	1	0	0.472296	-0.924110	-5.053085
14	1	0	-1.055931	-0.754167	-3.087312
15	6	0	0.914643	0.523741	0.522945
16	8	0	1.346749	-0.816853	0.878026
17	6	0	0.626866	1.379140	1.722096
18	1	0	0.011825	0.846217	2.451158
19	1	0	1.577758	1.654448	2.186602
20	1	0	0.107685	2.295126	1.424888
21	6	0	0.458095	-1.738439	0.484949
22	6	0	-0.876479	-1.301945	0.324395
23	6	0	0.882216	-2.992527	0.047191
24	6	0	-1.785696	-2.138827	-0.381440
25	1	0	-1.301223	-0.668839	1.109675
26	6	0	-0.034959	-3.773348	-0.636210
27	1	0	1.916011	-3.291207	0.176320
28	6	0	-1.359541	-3.345074	-0.883476
29	1	0	-2.815877	-1.807879	-0.476008
30	1	0	0.288361	-4.734113	-1.026609
31	1	0	-2.036089	-3.989890	-1.433170
32	16	0	-2.762380	1.102010	2.525050
33	8	0	-2.295550	2.407146	2.963550
34	8	0	-2.092102	-0.079186	3.076244
35	8	0	-2.932493	0.988967	1.027758
36	1	0	-1.871597	1.221544	0.151826
37	6	0	-4.505964	0.968206	3.072395
38	9	0	-5.029843	-0.182345	2.658960
39	9	0	-4.558595	1.013046	4.398456
40	9	0	-5.220302	1.969968	2.575734

Optimized Cartesian coordinates for ts-in34

Center	Atomic	Atomic	Coc	ordinates	(Angstro	oms)
Number	Number	Туре	Х	Y	Ζ	

1	6	0	1.104241	-1.676375	0.950820
2	6	0	2.435602	-1.803904	0.239666
3	6	0	2.928823	-0.538315	-0.140125
4	6	0	1.893435	0.433139	0.217312
5	8	0	0.638229	-0.110040	-1.310060
6	8	0	0.371637	-2.559036	1.282025
7	6	0	3.159542	-2.956522	-0.001317
8	6	0	4.398697	-2.828115	-0.637028
9	6	0	4.890554	-1.575796	-1.010372
10	6	0	4.157569	-0.410701	-0.772791
11	1	0	2.763971	-3.923271	0.294954
12	1	0	4.988022	-3.714536	-0.848913
13	1	0	5.856746	-1.506471	-1.499419
14	1	0	4.541025	0.559561	-1.071016
15	6	0	1.066688	-0.170797	1.311914
16	8	0	-0.100645	0.635303	1.353390
17	6	0	1.741240	-0.054596	2.693813
18	1	0	1.918692	0.997150	2.931284
19	1	0	1.047048	-0.480010	3.422275
20	1	0	2.685710	-0.601419	2.734928
21	6	0	0.267428	1.825025	0.824303
22	6	0	1.529673	1.801517	0.179299
23	6	0	-0.512334	2.976905	0.873241
24	6	0	2.025211	2.951800	-0.461000
25	1	0	-0.332616	-0.393804	-1.028056
26	6	0	0.018349	4.101639	0.268038
27	1	0	-1.497268	2.952244	1.321140
28	6	0	1.273041	4.102464	-0.386092
29	1	0	2.974601	2.929704	-0.985465
30	1	0	-0.560446	5.019989	0.280344
31	1	0	1.628767	5.016815	-0.847718
32	16	0	-2.670943	-0.131604	-0.189588
33	8	0	-2.364287	1.275105	-0.462048
34	8	0	-3.265278	-0.457303	1.096117
35	8	0	-1.553412	-1.047983	-0.601775
36	1	0	0.973516	-0.856981	-1.831974
37	6	0	-3.951641	-0.562960	-1.426441
38	9	0	-5.035793	0.188599	-1.247826
39	9	0	-3.495502	-0.354782	-2.661967
40	9	0	-4.298818	-1.842598	-1.316146

Optimized Cartesian coordinates for ts-in45

Center	Atom	ic A	tomic	Coordinate	es (Angstroms)
Number	Nun	nber	Туре	X Y	Z
1	6	0	2.236787	0.910934	-0.294755
2	6	0	1.541379	1.016069	-1.640574
3	6	0	0.438478	0.147422	-1.744001
4	6	0	0.311331	-0.544113	-0.484141
5	8	0	3.118950	-0.550823	-0.535862
6	8	0	2.913533	1.781174	0.205478
7	6	0	1.881307	1.872261	-2.674582
8	6	0	1.144241	1.794316	-3.855252
9	6	0	0.069691	0.904892	-3.979650
10	6	0	-0.297757	0.074448	-2.927661
11	1	0	2.714995	2.558370	-2.563697
12	1	0	1.411908	2.423894	-4.698017
Auctores P ISSN: 2690	ublishing)-4861	g LLC –	Volume 19(2)-5	542 www.auct	oresonline.org

Copy rights @ Nan Lu,

1	3	1	0	-0.490430	0.872240	-4.908379
1	4	1	0	-1.157491	-0.582910	-3.009329
1	5	6	0	0.915850	0.218477	0.597046
1	6	8	0	1.176613	-0.700339	1.629492
1	7	6	0	0.241480	1.452471	1.171103
1	8	1	0	-0.653611	1.165987	1.728092
1	9	1	0	0.959168	1.944383	1.832248
2	0	1	0	-0.027145	2.144025	0.370073
2	1	6	0	0.713859	-1.891666	1.242499
2	2	6	0	0.132147	-1.859117	-0.055271
2	3	6	0	0.829628	-3.070704	1.980890
2	4	6	0	-0.337106	-3.058106	-0.649589
2	5	1	0	3.314132	-1.223826	0.297619
2	6	6	0	0.343249	-4.210951	1.379008
2	7	1	0	1.341438	-3.083726	2.935068
2	8	6	0	-0.248154	-4.209414	0.084438
2	9	1	0	-0.746953	-3.051488	-1.653697
3	0	1	0	0.451808	-5.157940	1.897679
3	1	1	0	-0.590751	-5.149205	-0.333412
3	2	16	0	3.662845	-3.562457	0.568435
3	3	8	0	2.779343	-3.628573	-0.591676
3	4	8	0	3.610556	-4.636762	1.546106
3	5	8	0	3.662207	-2.190659	1.206381
3	6	1	0	3.997794	-0.236637	-0.812850
3	7	6	0	5.351607	-3.606659	-0.141726
3	8	9	0	5.522154	-4.694753	-0.882667
3	9	9	0	5.528661	-2.530849	-0.920987
4	0	9	0	6.272241	-3.586919	0.813693

Optimized Cartesian coordinates for **ts-i12**

Center	Atomio	 c A	Atomic	Coordinate	 s (Angstroms)	
Number	Num	ber	Туре	X Y	Z	
1	6	0	3.477529	-0.144503	-2.078859	
2	6	0	3.803505	-0.733996	-0.847074	
3	6	0	2.819662	-1.149675	0.042423	
4	6	0	1.485901	-0.962645	-0.320318	
5	6	0	1.166971	-0.403289	-1.551424	
6	6	0	2.149809	0.022153	-2.444749	
7	6	0	0.251589	-1.311797	0.481597	
8	6	0	-0.300060	-0.436401	-1.756495	
9	8	0	-0.906357	-0.010542	-2.715478	
10	8	0	0.256500	-2.283250	1.300535	
11	1	0	4.272122	0.177809	-2.745918	
12	1	0	4.850500	-0.860459	-0.583027	
13	1	0	3.067607	-1.586317	1.007227	
14	1	0	1.863123	0.458783	-3.397194	
15	6	0	-0.923421	-1.219617	-0.576880	
16	6	0	-1.140496	-2.653193	-1.076997	
17	1	0	-1.533587	-3.264744	-0.260678	
18	1	0	-1.821625	-2.667653	-1.933612	
19	1	0	-0.184722	-3.087343	-1.384856	
20	6	0	-2.205015	-0.540485	-0.142500	
21	6	0	-3.472427	-1.073735	-0.364413	
22	6	0	-2.108325	0.753437	0.404321	
23	6	0	-4.621979	-0.340909	-0.066566	
24	1	0	-3.575503	-2.068471	-0.784986	
Auctores Publishing LLC – Volume 19(2)-542 www.auctoresonline.org ISSN: 2690-4861						

25	6	0	-3.255879	1.490520	0.681117
26	6	0	-4.517164	0.947430	0.443583
27	1	0	-5.600037	-0.779483	-0.245581
28	1	0	-3.147710	2.486554	1.102347
29	1	0	-5.410196	1.524356	0.667765
30	6	0	-0.750647	1.248776	0.721213
31	6	0	-0.236186	2.397384	0.209475
32	6	0	0.038316	0.337773	1.525420
33	6	0	1.116784	2.852457	0.550676
34	1	0	-0.809581	3.018526	-0.474210
35	6	0	1.339780	0.820727	1.935478
36	1	0	-0.524542	-0.226877	2.265031
37	6	0	1.866824	1.970517	1.453224
38	1	0	1.929475	0.179006	2.589287
39	1	0	2.870302	2.294181	1.715527
40	8	0	1.585394	3.906809	0.113297
41	1	0	1.667990	-1.731487	3.834774
42	8	0	2.177835	-2.226576	3.180481
43	1	0	1.518739	-2.343739	2.445033

Optimized Cartesian coordinates for ts-II3

Center	Atomic	A	tomic	Coordinate	s (Angstroms)	
Number	Numb	er	Туре	X Y	Z	
1	6	0	-2.507098	4.812700	-3.307177	
2	6	0	-2.767721	3.551677	-3.854842	
3	6	0	-2.264478	2.387614	-3.273065	
4	6	0	-1.480060	2.508714	-2.132622	
5	6	0	-1.203466	3.770880	-1.607956	
6	6	0	-1.715910	4.935079	-2.169893	
7	6	0	-0.912167	1.429217	-1.203465	
8	6	0	-0.279462	3.625714	-0.451584	
9	8	0	0.016394	4.473919	0.357746	
10	8	0	-1.926911	1.064664	-0.271683	
11	1	0	-2.917339	5.698002	-3.782669	
12	1	0	-3.375251	3.479490	-4.752120	
13	1	0	-2.472568	1.417610	-3.714193	
14	1	0	-1.482646	5.901167	-1.732150	
15	6	0	0.260769	2.183472	-0.500857	
16	6	0	0.622178	1.640601	0.876291	
17	1	0	1.066196	0.644440	0.787917	
18	1	0	1.344973	2.308862	1.351635	
19	1	0	-0.264906	1.571949	1.509390	
20	6	0	1.491513	2.232459	-1.414212	
21	6	0	2.431975	3.254636	-1.259990	
22	6	0	1.722008	1.241045	-2.382453	
23	6	0	3.558840	3.321142	-2.071598	
24	1	0	2.270156	4.012379	-0.498370	
25	6	0	2.847383	1.327757	-3.208358	
26	6	0	3.760672	2.361399	-3.061123	
27	1	0	4.272096	4.128446	-1.938524	
28	1	0	2.991398	0.577030	-3.980344	
29	1	0	4.626979	2.417380	-3.712623	
30	6	0	0.809802	0.087644	-2.492513	
31	6	0	1.233994	-1.153410	-2.893531	
32	6	0	-0.486716	0.141520	-1.844516	
33	6	0	0.266088	-2.112071	-2.415392	
Auctores Publishing LLC – Volume 19(2)-542 www.auctoresonline.org ISSN: 2690-4861						

Copy rights @ Nan Lu,

34	1	0	2.288526	-1.402384	-2.933620
35	6	0	-1.506496	-0.730841	-2.407877
36	1	0	0.010579	-1.206359	-0.875777
37	6	0	-1.126662	-1.969141	-2.811132
38	1	0	-2.552954	-0.466901	-2.285202
39	1	0	-1.807594	-2.804981	-2.911954
40	8	0	0.416763	-2.413181	-1.167149
41	1	0	-2.399640	1.869687	-0.009278

Optimized Cartesian coordinates for **ts-3III**

•

Center	Atomic		Atomic	Coordinates (Angstroms)		
Number	Nu	mber	Туре	X Y	Ζ	
			2.577050	1.001164	1 707 472	
1	6	0	-3.577950	-1.821164	-1./9/4/2	
2	6	0	-2.383122	-2.493203	-2.095368	
3	6	0	-1.220570	-2.216010	-1.385178	
4	6	0	-1.301291	-1.2013/3	-0.36//86	
5	6	0	-2.502686	-0.592709	-0.068900	
6	6	0	-3.651403	-0.855/95	-0.787599	
/	6	0	-0.278982	-0.699595	0.465822	
8	0	0	-2.230323	0.347758	1.102344	
9	ð	0	-3.0/3820	1.159525	1.524500	
10	8	0	-1.842373	-1.090072	2.171098	
11	1	0	-4.466/19	-2.05/07/	-2.3/6305	
12	1	0	-2.30/230	-3.222530	-2.898587	
15	1	0	-0.279220	-2.702845	-1.024891	
14	ſ	0	-4.5/165/	-0.527852	-0.55/690	
15	6	0	-0./09190	0.589470	1.068/98	
10	0	0	-0.154005	0.952001	2.459474	
1/	1	0	0.913688	1.103215	2.420840	
18	1	0	-0.694398	1.820680	2.799957	
19	l	0	-0.347283	0.114607	3.151261	
20	6	0	-0.1/8/02	1.644990	0.106231	
21	6	0	-0.899758	2.794602	-0.189101	
22	6	0	1.136422	1.472513	-0.3/3/63	
23	6	0	-0.327637	3.779023	-0.993441	
24	I	0	-1.902918	2.895113	0.216527	
25	6	0	1.689971	2.467613	-1.181794	
26	6	0	0.962803	3.614324	-1.488695	
27	1	0	-0.894578	4.671520	-1.239766	
28	1	0	2.684860	2.343052	-1.598625	
29	1	0	1.404779	4.375274	-2.124153	
30	6	0	1.874318	0.219391	-0.044919	
31	6	0	3.245528	0.086314	-0.215490	
32	6	0	1.138881	-0.935251	0.355248	
33	6	0	3.877134	-1.142064	0.003184	
34	1	0	3.864957	0.925705	-0.511101	
35	6	0	1.768943	-2.168424	0.516724	
36	1	0	5.552560	-2.060996	0.020075	
37	6	0	3.142706	-2.275897	0.363049	
38	1	0	1.178126	-3.029043	0.815841	
39	1	0	3.645275	-3.225285	0.526684	
40	8	0	5.218760	-1.171050	-0.163251	
41	1	0	-2.493577	-1.792493	2.008774	

Optimized Cartesian coordinates for ts-III4

Center	Aton	nic A	tomic	Coordinate	s (Angstroms)
Number	Nu	mber	Туре	X Y	Ζ
1	6	0	-3.716634	4.050979	-3.056807
2	6	0	-3.879454	2.884226	-3.851999
3	6	0	-2.924866	1.900028	-3.853998
4	6	0	-1.784672	2.061266	-3.016694
5	6	0	-1.599203	3.264560	-2.292320
6	6	0	-2.583164	4.258167	-2.300859
7	6	0	-0.657077	1.235415	-2.793492
8	6	0	-0.173581	3.392022	-1.766387
9	8	0	0.447856	4.172351	-2.599909
10	8	0	-0.140362	3.855033	-0.407763
11	1	0	-4.499147	4.805159	-3.076996
12	1	0	-4.760187	2.790222	-4.478726
13	1	0	-3.032506	1.044494	-4.510994
14	1	0	-2.429399	5.169393	-1.731900
15	6	0	0.264556	1.850533	-1.793553
16	6	0	-0.064607	1.165508	-0.434495
17	1	0	0.109355	0.085462	-0.479779
18	1	0	0.578396	1.613148	0.324522
19	1	0	-1.105424	1.359916	-0.159139
20	6	0	1.707429	1.614617	-2.119657
21	6	0	2.676981	2.476795	-1.606040
22	6	0	2.091385	0.507658	-2.893651
23	6	0	4.019799	2.258462	-1.878206
24	1	0	2.352574	3.331449	-1.023525
25	6	0	3.452704	0.307385	-3.171133
26	6	0	4.408507	1.174295	-2.668027
27	1	0	4.767336	2.943948	-1.491007
28	1	0	3.768007	-0.517900	-3.800986
29	1	0	5.457221	1.011472	-2.895652
30	6	0	1.053316	-0.418183	-3.384825
31	6	0	1.378566	-1.665335	-3.912139
32	6	0	-0.324236	-0.034847	-3.352731
33	6	0	0.391534	-2.524833	-4.386905
34	1	0	2.402409	-2.016849	-3.948723
35	6	0	-1.304801	-0.931721	-3.826029
36	1	0	0.034486	-4.225502	-5.179152
37	6	0	-0.965033	-2.165038	-4.333331
38	1	0	-2.351805	-0.673328	-3.722010
39	1	0	-1.730322	-2.861477	-4.665248
40	8	0	0.797980	-3.714751	-4.872780
41	1	0	0.257468	4.731641	-0.534188