
  Auctores Publishing – Volume 2(1)-009 www.auctoresonline.org  

1 
 

 

 

 

 

 

Body Fatty Acids, Nutrition, and Health: Is Skewness of Distributions a 

Mediator of Correlations? 

Arne Torbjørn Høstmark 
Faculty of Medicine, Institute of Health and Society, University of Oslo, Norway. 

*Corresponding Author: Arne Torbjørn Høstmark, Faculty of Medicine, Institute of Health and Society, University of Oslo, Norway. 

E-mail: a.t.hostmark@medisin.uio.no 

Received date: August 29, 2019; Accepted date: September 12, 2019; Published date: September 17, 2019 

Citation: Arne Torbjørn Høstmark, Body Fatty Acids, Nutrition, and Health: Is Skewness of Distributions a Mediator of Correlations?. J.Nutrition 

and Food Processing, 2(1);DOI: 10.31579/2637-8914/009 

Copyright:©2019 Arne Torbjørn Høstmark, This is an open-access article distributed under the terms of the Creative Commons Attribution License, 

  which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 

  

 

Definitions and Abbreviations: 
 

Range: difference between the largest and smallest values. 

Distribution: graph showing the frequency distribution of a scale variable 

within a particular range. In this article, we also use distribution when 

referring to a particular range, a - b. 

Uniform distribution: every value within the range is equally likely. In 

this article, we may write “Distribution was from a to b”, or “Distributions 

of A, B, and C were a – b, c – d, and e - f, respectively”. 

“Low–number variables” have low numbers relative to “high-number 

variables”. 

LA = Linoleic Acid (18:2 n6) 
ALA = Alpha Linolenic Acid (18:3 n3) 

AA = Arachidonic Acid (20:4 n6) 

EPA = Eicosapentaenoic Acid (20:5 n3) 

DPA = Docosapentaenoic Acid (22:5 n3) 

DHA = Docosahexaenoic Acid (22:6 n3) 

 

Introduction 

 
With reference to diet and fatty acid metabolism, we previously suggested 

that the relative amount of positive scale variables (e.g. fatty acids) can 

be positively associated as a consequence of their particular 

concentration distribution/variability, suggesting Distribution 

Dependent Regulation of the fatty acid metabolism [1 - 5]. Variability of 

concentrations could be related to differences between subjects, but also 

depend on intra-individual variations, for example related to diet, time, 

and environment in general, implying that this type of regulation might 

take place both between and within subjects. Furthermore, we suggested 

that evolution might possibly use differences in the concentration 

range/variability to ensure that relative amounts of some variables must 

be positively correlated whereas others will be negatively associated, as 

recently observed for the positive correlation between % EPA and % AA, 

which are fatty acids providing eicosanoids with opposing actions [1]. 

 

Particular background 
 

Arachidonic acid (AA) is formed in the body from linoleic acid (LA), a 

major constituent in many plant oils, and is converted by cyclooxygenase 

and lipoxygenase into various eicosanoids, i.e. prostacyclines, 

thromboxanes and leukotrienes [6 - 8]. AA derived thromboxane A2 

(TXA2) and leukotriene B4 (LTB4) have strong proinflammatory and 

prothrombotic properties. Furthermore, endocannabinoids, which are 

derived from arachidonic acid, may have a role in adiposity and 

inflammation [9]. It is well known that EPA and AA are metabolic 

antagonists [6- 8]. Eicosanoids derived from EPA may decrease 

inflammatory diseases [10 - 11], development of cardiovascular diseases 

[12], and cancer [13]. When considering the beneficial health effects of 

foods rich in EPA, many of the positive effects would be anticipated if the 

fatty acid works to counteract effects of AA. It has been reported that a 

decreased level of the serum EPA/AA ratio may be a risk factor for cancer 

death [13]. It would appear, accordingly, that a coordinated regulation of 

the relative amounts of EPA and AA could be of physiological interest, so 

that an increase (decrease) in the percentage of one of these fatty acids 

would be accompanied by a concomitant increase (decrease) in percentage 

of the other. Indeed, we recently reported this outcome in breast muscle 

lipids of chickens [1, 2]. 

 

Furthermore, we observed that the concentration distribution per se of AA, 

EPA, DPA, and DHA seemed to be crucial for obtaining a positive 

association between their relative amounts [1, 2]. This conclusion was 

largely based upon computer experiments with random numbers, sampled 

within the real, physiological concentration distributions of the fatty acids. 

The computer experiments demonstrated that even small changes in 

distributions might cause appreciable changes in scatterplots, and 
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correlation coefficients. We hypothesized that evolution might have 

“chosen” particular concentration ranges to ensure that percentages of 

fatty acids with antagonistic actions become positively associated, in 

order to make their relative amounts balanced. Furthermore, if 

concentration ranges were essential, then changes in these ranges should 

disturb the relationship between e.g. %EPA and %AA, and so was indeed 

suggested by our computer analyses [1, 2]. 

 

In our previous reports we observed that a combination of two low- 

number variables (A, B) with low variability relative to a third variable 

(C) seemed to give skewed distributions of the %A (B, C) frequency 

histograms [4]. This observation raises the question of 1) how skewness 

of percentage amounts of A, B, C is brought about, and 2) whether 

skewness of the frequency distributions of percentages of A, B, and C is 

related to the correlation between the relative amounts. The present work 

is an attempt to elucidate these questions, with particular focus on the 

relationship between percentages of two of the variables (A and B) in 

response to altering distribution of the third (C). 

 

Materials and Methods 
 

In previous works [1, 2], we investigated the association between the 

relative amount of the n6 fatty acid AA, and percentages of n3 fatty acids 

(EPA, DPA, DHA). From histograms, we found physiological 

concentration distributions (g/kg wet weight) for the fatty acids. Next we 

computed the sum (g/kg wet weight) of all fatty acids, and the remaining 

sum when omitting the couple of fatty acids under investigation. We then 

had 3 scale variables only. With these variables, and with surrogate 

random number variables generated within the true distributions, we did 

analyses as shown below. For the purpose of the present work, we name 

the 3 variables A, B, and C. Our previous analyses suggested that the 

question of whether e.g. %A and %B were significantly correlated or not, 

depended upon the particular distribution (range) of each of the variables, 

as shown by comparing outcomes based upon real values (obtained in a 

diet trial) with the results found using surrogate, random numbers with 

varying distributions. In the present work, we solely use random numbers 

to explore how skewness of the frequency distribution of relative amounts 

of A, B, and C might influence the association between percentages of A 

and B. Dependency between percentages is shown by the equation %A + 

%B + %C = 100. Using random numbers for the three variables, we made 

histograms of distributions of %A (B, C), scatterplots for the %A vs. %B 

association, and carried out correlation analyses (using the non- 

parametric, Spearman’s correlation coefficient, rho). Furthermore, we 

studied how alterations in the distributions (ranges) of especially C might 

change skewness of %A (B, C), as well as the relationship between 

percentage amounts of A, B, and C. For each analysis, we made several 

repeats with new sets (n = 200 each time) of random numbers; the general 

outcome of the repeats was always the same, but corresponding 

correlation coefficients (Spearman’s rho) and scatterplots varied slightly. 

We present the results as histograms, scatterplots with correlation 

coefficients (rho) indicated in the figure text, and show equations of the 

regression lines. We mainly use random numbers with a uniform 

distribution. SPSS 25.0 was used for the analyses, and for making figures. 

The significance level was set at p < 0.05. 

 

Results and Discussion 
 

An algebraic approach to assess whether percentages are correlated 

 

We define three positive scale variables, A, B and C, giving %A + %B 

+ %C = 100, i.e. 

%B = - %A + (100 - %C). Since the slope of the %B vs. %A regression 

line is determined by the ranges of A(%A) and B(%B), a more appropriate 

equation would be: %B (p - q) = - %A (r - s) + (100 - %C (t – u)) where the 

subscript parentheses indicate ranges of A, B, and C. A crude slope 

estimate of the linear relationship between %A vs. %B may be calculated 

manually by the minimum and maximum values of the A (%A) and B 

(%B) ranges: i.e. by (max - min) of %B divided by (max - min) of %A. 

 

With reference to fatty acids and diet, we previously used this equation to 

assess whether percentage amounts of A and B were positively or 

negatively associated [3 -5]. Since the equation has three unknown 

variables, each of which with a particular distribution (range), it is hard to 

predict whether or not there is an association between relative amounts of 

A and B. However, we may simplify the equation by approximations, so 

as to involve two variables only. The simplification may be carried out in 

two ways: 1) by making the expression (100 - %C) approach zero, and 2) 

by making %C approach zero. Thus, if %C consists of high values and the 

corresponding values of %A and %C are such that (100% - %C) > %A, 

then the equation would approach %B = %A, or rather %B(p - q) = %A(r -  s), 

where the subscript parentheses indicate ranges of A and B. This equation 

suggests a linear positive association between %A and %B, with a slope 

being determined by the ranges of a (%A) and B (%B). The requirement 

(100 - %C) > %A is indeed satisfied, since the small, remaining value when 

calculating (100 - %C) would have to be divided between %A and %B. 

For example, suppose that %C could theoretically reach 99%, then the 

remaining percentage is to be divided between %A and %B. Hence, the 

slope of the %A vs. %B regression line will be positive. In condition 2) the 

equation would approach %B (p - q) = - %A(r - 

s) + 100, showing an inverse %A vs. %B relationship. We would anticipate 

positive (negative) correlations also within a certain boundary around the 

above-mentioned conditions, but with poorer outcomes as the above- 

mentioned conditions are decreasingly complied with. Computer 

experiments with random numbers, and with varying distributions (ranges) 

of the variables, seemed to verify this theoretical reasoning [4]. 

 

The equation %B = - %A + (100 - %C) seemed to work well under various 

conditions, when conditions 1) and 2) above were approached [4]. Thus, 

when both A and B were small-number 

variables with a narrow range relative to C, then we observed a positive 

correlation between %A and %B, and a negative correlation between %C 

and %A(B). In contrast, when C was a low-number variable relative to A 

(B), then %A correlated negatively with %B [4, 5]. 

 

Furthermore, from the equation we anticipated to find a Turning Point 

between positive (negative) and negative (positive) %A vs. %B 

correlations, in response to moving the %C distribution towards lower 

(higher) values, and so was observed in our previous computer 

experiments [3,4]. Thus, when progressively moving the %C distribution 

towards higher (lower) values, the positive relationship  between  %A and 

%B improved (became poorer), and at a given condition (the Turning 

Point) a positive (negative) correlation between relative amounts of A and 

B turned to become negative (positive). 

 

Exception from the general rule 

 

During our previous computer experiments we encountered one particular 

condition where the general rules mentioned above did not seem to apply. 

This exception was observed when we progressively narrowed the C range 

towards the upper limit within a given interval (i.e. from 1 - 10 to 9.8 - 

10.0). In this case, when progressively narrowing the C range we observed 

that the positive association between %A and %B became increasingly 

poorer, Figure 1. 
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Figure 1. Association between degree of narrowing the C range towards the upper limit and rho for the correlation between percentages of A and 
B. We narrowed the C range progressively towards the upper limit (C = 10); values on the abscissa correspond to: value 0, C range 1 -10 (giving rho 
for %A vs. %B: 0.890, p<0.001, n=200); value 1, C range 2 -10; value 2, C 3 -10; value 3, C 6 -10; value 4, C 8 -10; value 5, C 9 -10; value 6, C 9.8 -10.0. 
The figure relates to the equation %B = -%A + (100 - %C), see text. 

 

This result occurred in spite of obtaining slightly higher values of %C (not 

shown), a condition which according to the reasoning above should 

improve the correlation. The effect of narrowing the C range upon rho for 

%A vs. %B was large (rho varying from above 0.8 to approximately zero). 

In contrast to this, there was only a small apparent concomitant movement 

of the %C distribution towards higher values was small, as estimated by 

Q3 of the %C histogram (going from 97.1 % with C 1 – 10, to 97.6% with 

C 9.9 – 10.0), not shown. We also noticed that histograms of percentages 

of A, B, and C seemed increasingly closer to be symmetrical when 

narrowing the C range. This finding raises the question of whether low 

skewness of the %A (B, C) histograms is a factor to explain the poor %A 

vs %B association. Below we first focus upon how range of the variables 

can influence skewness of their percentages. 

 

Relationship between range of A, B, C and skewness of their 

percentage amounts 

 

In our previous studies we observed varying skewness of the frequency 

distributions of %A (B, C) in responses to varying the ranges of A, B and 

C [4]. For example, we found high skewness if A - and also B - had low- 

number ranges and low variability relative to C. Furthermore, we noticed 

that frequency distributions of percentages of the low-number variables 

(A, B) were positively skewed, and that of the high-number variable (C) 

was negatively skewed [4]. This observation raises the question of how the 

skewness of %A (B, C) histograms is brought about. To explain this 

outcome, we may first simplify by considering two variables only; A with 

low-number values and low variability, and B with high – number values 

and high variability, relative to A. For simplicity, we choose the A-range 

to be close to 1, and B having range 1 to 10. Since %A + %B = 100; %A 

in this case is 100*A/ (A + B), the expression may be approximated to %A 

= 100/ (1 + B). Thus, for each unit increase in B, the denominator (and % 

A) changes more in the lower part of the B range than in the upper part. 

For example, when B increases one unit from 1 to 2, the concomitant 

decrease %A is from 100/ (1+1) = 50.0% to 100/ (1+2) =33.3%. A similar 

B- increase in the upper end of the interval (from 9 to 10) is accompanied 

by a much smaller decrease in %A, i.e. from 100/ (1+9) = 10.0% to 100/ 

(1+ 10) =9.1%. If the B range had been from 1 to 100, then the decrease in 

%A in response to increasing B one unit in the upper end (from 99 to 

100) would have been very small, from 100/(1+99) = 1.00% to 100/(1 + 

100) = 0.99%, see Figure 3. These examples illustrate that the effect of 

increasing B upon altering %A is greatly attenuated as the B-interval 

increases. 

http://www.auctoresonline.org/
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Figure 3. Relationship between B with a broad range, and %A when A is close to 1. The figure relates the equation 100*A/ (A + B) when A is close 

to 1, and B has range 1 -100, see text. 
 

Thus, there is a much lower number of cases within each % A - unit 

decrease in the upper end of the %A scale (caused by low values of B), 

compared with the number of cases within each %A –unit decrease in the 

lower end of the %A – scale (caused by high values of B. Hence, there will 

be a positively skewed histogram of %A. Since %A + %B = 100%, for %B 

skewness to the opposite side is expected (Figure 4). 

 
 

  

Figure 4. Histograms of % A and %B when %A + %B = 100. The figure relates the equation 100*A/(A + B) when A is close to 1, and B has range 1 -100, 
see text. 

 

A similar way of reasoning should apply for frequency distributions of 

percentage amounts of 3 positive scale variables (A, B, C) with different 

ranges: percentage of two low-number variables (A, B) with a narrow 

range, and one variable having high-numbers/broad-range (C) relative to 

A and B, should give positively skewed %A(B) histograms and a 

negatively skewed %C histogram, as was found with for example A 0.10 

-0.11, B 0.20 -0.22 , C 1 – 10 (Figure 5). In this case, skewness of %A, %B, 

and %C were 1.452, 1.442, and -1.445, respectively. 
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Figure 5. Histogram of percentages of three positive scale variables, A, B, and C; i.e. %A + %B + %C = 100, or %B = -%A + (100 - %C). Range of 

A 0.10 -0.11, of B 0.20 – 0.22, and of C 1 -10. 

Effect of narrowing the c range upon skewness of %a (b, c). 

Above we showed that a large difference between the ranges/variabilities 

for A (B) relative to C caused large skewness of the distribution of their 

percentage amounts. We would accordingly expect the opposite to happen 

in response to making the A, B, and C - variabilities more similar, i.e. 

skewness of the percentage amounts of the variables should decrease as 

the C-range is narrowed. Possibly, skewness might approach zero in 

response to an extreme narrowing of the C distribution, so that the %C 

histogram would approach a symmetrical (normal) distribution. A 

computer experiment seemed to verify this reasoning, as for example 

observed when ranges of A, B, C were all narrow, being 0.10 – 0.11, 0.20 

– 0.22, 1.0 -1.1, respectively (Figure 6). In this particular case, skewness 

of percentage amounts of A, B, C were near symmetrical, being 0.210, 

0.078, and 0.027, respectively. 

 
 

 
 

Figure 6. Histogram of percentages of three positive scale variables, A, B, and C when the ranges of A, B, and C were narrow; A 0.10 – 0.11; B 0.20 – 

0.22; and C 1.0 -1.1. Skewness of A: 0.210, of B: 0.078; and of C: 0.027 

 

Skewness of %A (B, C) and correlation between the percentages 

 

Since a large difference in range/variability between two low-number 

variables A (B) relative to C seems to cause high negative skewness of 

the %C distribution, there must be a compensatory concomitant increased 

skewness of %A and %B to the opposite side (positive skewness). 

Furthermore, when gradually increasing the positive skewness of A (B) 

we should expect a concomitant gradual increase in the negative 

skewness of %C. Accordingly, we would expect a negative correlation 

between %C and %A (B), and a positive correlation between percentages 

of A and B. These correlations should improve (be poorer) with increasing 

(decreasing) skewness of percentages of A, B, and C. 

 

Furthermore, with an extreme narrowing of the C range, we might 

possibly encounter a collapse of the positive %A vs. %B correlation, since 

skewness of the percentages in this case should approach zero. The above 

reasoning leads to the following hypotheses: With 2 low-number/narrow- 

    range variables (A, B) relative to a third variable (C) we might expect: 
1) High C variability  High skewness of %C (A, B)  Strong %A 

vs. %B correlation. 

2) Low C variability  Low skewness of %C (A, B) Poor %A vs. %B 

correlation. 

To further test this hypothesis we did some additional computer 

experiments with uniformly distributed random numbers. We first show 

the outcome with A and B having the same low-number distribution and 

low variability relative to C, i.e. A and B 0.10 - 0.15, and C 1 - 10. In line 

with the reasoning above,  there  was  a  positively skewed  distribution of 

%A and %B, and a negative skewness of the %C histogram (Figure 7, 

upper panels). Furthermore, as expected we found a positive correlation 

between %A and %B and a negative correlation between %C and 

percentage of each of the two low-number variables. Since ranges for A 

and B were equal, so did also the scatterplot between %C and percentages 

of A and B appear (Figure 7, lower panels). Spearman’s rho for %A     vs. 

%B: 0.946; regression line %B = 0.93(0.02)*%A + 0.18(0.07); %C vs. 

%A(B): rho = -0.985 (-0.986), all with p<0.001; regression lines %C = 

-1.93 (0.02)*%A + 99.82 (0.07); %C = -1.93 (0.02)*%A + 99.82 (0.07). 

SE values appear in the parentheses in the equations of the regression lines. 

http://www.auctoresonline.org/
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Figure 7. Histograms of %A, %B, and %C (upper panels) and scatterplots showing correlations between the relative amounts of A, B, and C (lower 

panels). Distribution of A and B: 0.10-0.15; C 1 -10. Skewness of A, B, and C: 1.61, 1.58, and - 1.57, respectively. Spearman’s rho for %A vs. %B: 

0.946; regression line %B = 0.93(0.02)*%A + 0.18(0.07); %C vs % A (B); rho = -0.985 (-0.986), all with p<0.001. Regression lines: %C=-1.93 

(0.02)*%A + 99.82(0.07); %C=-1.95 (0.02)*%B + 99.85(0.07), n = 200. 

 

Further experiments with narrowing of the C range 
We next narrowed the C range moderately, from both sides 

simultaneously, i.e. from 1 - 10 to 4 - 6, keeping ranges of A and B as 

before (0.10 - 0.15). Skewness was greatly reduced; for A: 0.413, for B: 

0.454; for C: -0.439 (histograms not shown). In accordance with the 

reasoning above there was a reduced strength of the association 

between %A and %B, as illustrated by the scatterplot (Figure 8), and by 

Spearman’s rho for %A vs. %B: rho = 0.491 (p<0.001); the %C vs. %A(B) 

association was also somewhat poorer; rho= -0.841 (-0.843), scatterplot not 

shown. 

 

 
 

Figure 8. Effect of narrowing the C range moderately upon the association between %A and %B, see text. Ranges were: for C: 4 - 6; for A and B: 

0.10 - 0.15. Spearman’s rho for %A vs. %B: 0.491 (p<0.001), n = 200. 
 

When further narrowing the C range from both sides, i.e. to 5.0 -5.5, we 

obtained that the %A vs. %B correlation collapsed (rho = 0.038, p = 0.594, 

n = 200), histogram not shown. However, the negative association 

between %C and %A (B) still prevailed: rho = -0.722 (-0.702), p<0.001. 

In this condition we found skewness of %A, % B, and % C to be -0.041, 

-0.099, and -0.038, respectively, i.e. close to a normal distribution for all 

percentages 

In the next experiment we narrowed the C range appreciably towards the 

lower limit, i.e. to 1.00 – 1.1. In this situation, skewness of %A, %B, or %C 

were 0.077, 0.090, and -0.071, respectively, and a poor scatterplot of %A 

vs. %B (rho = -0.155 (p=0.029, n= 200), Figure 9. 

http://www.auctoresonline.org/
https://www.auctoresonline.org/journals/nutrition-and-food-processing


  Auctores Publishing – Volume 2(1)-009 www.auctoresonline.org 

 J Nutrition and Food Processing        Page 7 of 10 

 

 

 

 
 

 
 

 

Figure 9. Effect of narrowing the C range towards the lower limit upon the association between %A and %B. Ranges were: for C 1.0 – 1.1; for A and 

B 0.10 - 0.15. Spearman’s rho for %A vs. %B: = -0.194 (p=0.006). 
 

We finally narrowed the C range appreciably towards the upper limit, 
i.e. to 9.9 – 10.0. In this condition there was no longer a skewed 

distribution of %A, %B, or %C; skewness of A: 0.006, of B: 0.089; and 

of C: 0.033; rho for %A vs. %B: -0.058 (p=0.412, n = 200), scatterplot 

not shown. It would appear, accordingly, that progressively narrowing of 

the C range seems to be accompanied by 1) decreased skewness of A (B, 

C), and 2) a poorer association between percentages of A and B, 

eventually ending in a complete collapse of the %A vs. %B association. 

This outcome seems to be encountered irrespective of whether the 

narrowing of the C range is from both sides simultaneously, or towards 

the upper or lower limit. The results strongly suggest that skewness of %C 

(A, B) - caused by differences in the ranges of A, B, and C - is a factor 

governing the association between percentages of A and B. However, in 

spite of an apparent collapse in the association between percentages of A 

and B when the narrowing of C is very high, the inverse association 

between %C and %A (B) still seems to prevail also with extreme 

narrowing (results not shown), possibly attributed to the fact that even a 

minor increase in %C must be compensated by a concomitant reduction 

in %A (B). 

 

Is the relationship between skewness of  C  and  correlation  between 

%A and %B limited to using uniformly distributed random 

numbers? 

It might be questioned whether the results above were an effect of using 

uniformly distributed random numbers in the experiments. We therefore 

did some additional experiments using random numbers with normal 

distribution, generated on the basis of mean (SD) values. We sampled A, 

B, and C with normal distribution in 5 sets (n = 200 in each). In all sets 

we used the same mean (SD) values for A and B, i.e. 0.10 (0.01), but 

different variabilities of C. For C, in Set 1 we used: 1.0 (0.4); in Set 2: 1.0 

(0.3); in Set 3: 1.0 (0.2); in Set 4: 1.0 (0.1); and in Set 5: 1.00 (0.05). 
Skewness of the %A/%B/%C histogram was in Set 1: 5.44/5.34/-5.89; in 

Set 2: 1.86/1.95/-1.99; in Set 3: 0.97/1.13/-1.14; in Set 4: 0.35/0.25/-0.38; 

and in Set 5: 0.10/0.18/ 0.06. Thus, we observed a progressive attenuation 

of skewness of the %A (B, C) histograms in response to increasingly 

narrowing the C range. Values of Spearman’s correlation coefficients (rho 

for %A vs. %B) in the 5 Sets were: 0.907/0.839/0.738/ 0.381/0.078 (p = 

0.271 for Set 5; p<0.001 for Set 1 to Set 4). These results indicate that the 

association between percentages of A and B will be increasingly poorer, 

and finally collapse, as the variability of C decreases. It would appear, 

accordingly, that the effect of narrowing the C distribution upon correlation 

between percentages of A and B is not limited to using uniformly distributed 

random numbers. 

 

In this context we may recall that great variability is not unusual in biology. 

Hypothetically, differences in concentration ranges/high variability could 

have a regulatory function when it comes to the association between relative 

amounts of particular variables, as we have suggested previously to be the 

case for particular diet - related fatty acids [1-4]. 

 

Additional experiments to investigate the association between 

skewnessof the %C histogram and correlation between percentages of 

A and B 

We did some further experiments to examine how skewness is related to the 

correlation between relative amounts of A, B, and C. In these experiments 

we changed the ranges of A, B, and C in many ways. The results are 

summarized in Figure 10, where skewness of %C is plotted against 

Spearman’s rho for the association between %A and %B. 

http://www.auctoresonline.org/
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Figure 10. Association between skewness of the %C histogram and Spearman’s rho for the correlation between percentages of the remaining two 

variables (A and B). The figure relates to the equation %A + %B + %C =100, or %B = - %A + (100 - %C), see text. The figure was made using 

uniformly distributed random numbers of A, B, and C. Each of the 49 points was computed on the basis of 200 random “cases”, computed with 

particular ranges for A, B, and C. 
 

As shown in Figure 10, there was a relationship between skewness of 

percentage amount of one of the 3 variables (C) and rho for the correlation 

between percentage amount of the remaining two variables (A and B); the 

relationship seemed like a mirror image of a sigmoidal scatter of points. 

With increasing negative (positive) skewness we observed a progressive 

improvement of the positive (negative) correlation between percentages 

of A and B. Similar relationships were obtained when skewness of the 

distribution of % A (%B) was plotted against rho for the correlation 

between %B vs. %C (%A vs. %C), not shown. 

 

Turning Point 

W previously suggested that there should be a Turning Point where a 

positive (negative) correlation between percentages of A and B turns to 

become negative (positive), in response to varying the range of C [3,4]. 

The present experiments indicate that this point is found when skewness 

of the %C distribution approaches zero. High negative (positive) 

skewness of the %C histogram gives a high positive (negative) association 

between %A and %B; the correlation is attenuated as skewness of %C 

approaches zero, and turns to become negative (positive) as skewness of 

%C turns to be positive (negative). 

 

It would appear, accordingly, that when skewness of the %C distribution 

approaches zero (symmetrical histogram), then rho (%A vs. %B) varies 

greatly in response to minor changes in skewness of %C; in the present 

experiments rho varied from approximately + 0.200 to - 0.750 when 

skewness of %C was close to zero. Thus, close to a symmetrical 

distribution of the histogram of %C, the correlation between percentages 

of the two remaining variables (A and B) is very sensitive to changes in 

skewness of %C. On the other hand, with very high (positive or negative) 

skewness of the %C distribution, only small changes in the size of 

Spearman’s rho for the %A vs. %B correlation is allowed. Thus, skewness 

of the %C distribution may seem to explain the correlation between 

percentages of A and B. However, when the %C histogram is close to 

become symmetrical there is appreciable alterations in rho for the %A vs. 

%B correlation, in response to even minor changes in %C skewness. This 

finding would make skewness of %C skewness a poor predictor of the 

strength of correlation between percentages of A and B. Nevertheless, 

these and our previous experiments [4] seem to suggest that skewness of 

the %C distribution, as well as the equation %B = -%A + (100 - %C), 

might serve to explain whether correlations between percentages of A and 

B will be positive or negative, and also whether we 

might expect associations to be strong or weak. 
In this context, we point out again that high positive values of rho for the 

association between %A and %B should be expected when %C approaches 

100, and high negative values when %C approaches zero. High %C values 

are obtained when both A and B are low-number/low-range variables relative 

to C. This condition favors high positive skewness of %A and %B, and high 

negative skewness of %C. In this case, the numerator would be small in the 

fraction A/(A+B+C). The denominator will vary considerably, and mainly 

depend on the width of the C range. Skewness of percentages of A, B, and 

C will increase with increasing width of the C range, as explained above. 

If A - and also B - are high-number variables relative to C, then A/(A+B+C) 

= 1/ (1 + B/A + C/A); this expression will approach 1/ (1+ B/A). Thus, in 

this case % A is largely governed by the B/A ratio. Since A and B are high- 

number variables relative to C, the equation %B = -%A + (100 - %C) may 

be approximated to %B = -%A + 100, showing a negative association 

between %A and %B, irrespective of the ranges of A and B. An absolute 

requirement for making this approximation is that both A and B are high- 

number variables relative to C. 

 

Repeated measurements of 1) Q3 of the %C distribution, 2) skewness 

of %C, and 3) Spearman’s rho for %A vs. %B, when skewness of %C 

is close to be symmetrical 

 

The findings above raise the question of how values of 1) Q3 for the %C 

distribution, 2) skewness of the %C histogram, and 3) rho for %A vs. %B 

might vary when ranges of A,B, and C make near - symmetrical histograms 

of %A (B, C). We accordingly did 10 repeats of a condition expected to give 

a near- symmetrical distribution of percentages of A, B, and C: i.e. A and B 

0.10 - 0.15; C 9 -10 (n = 200 in each repeat). The outcome was: Spearman’s  

rho  for  %A  vs.  %B:-0.047;  -0.011;  0.049;  0.041; 0.071; 

0.069; 0.068; 0.090;0.173;0.005. Skewness of %C: 0.204; -0.062; -0.065; 

-0.153; -0.070; -0.310; 0.132;   -0.026; -0.048; -0.005. Q3 for %C: 97.55; 
97.60;  97.61;  97.60;  97.60;  97.60;  97.55;  97.58;  97.60;  97.59.   This 

experiment suggests that the third quartile of the %C distribution has less 

variability than rho (%A vs. %B) and skewness of %C. Coefficients of 

variation (CV) were; for rho (%A vs. %B) = 100*0.061/0.051 = 119.6%; 

for Skewness of %C = 100*0.141/-0.040 = - 352.5%; for Q3 of %C = 

100*0.022/97.59  =  0.02%.  This experiment suggests that skewness of the 

%C histogram has very high variability when the histogram of %C is near-

symmetrical. 

http://www.auctoresonline.org/
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Is skewness of distribution of percentages of A (B, C) an absolute 

requirement to obtain a significant correlation between the 

percentages? 

In the previous experiments we observed that high correlations between 

percentages of A (B, C) seemed to be accompanied by high skewness of 

the distribution of the percentages. Furthermore, the correlation 

improved as skewness improved, and became poorer as skewness was 

attenuated. These observations raise the question of whether skewness 

is an absolute requirement to obtain correlations between percentages of 

A, B, and C. The following examples suggest that correlations may be 

obtained without skewness of the histograms of % A, % B, and % C. 

Example 1: With A 0.20 – 0.40; B 0.10 – 0.15; C 4 – 6 (i.e. two low-

number variables relative to a third one with narrow-range) we found a 

near- symmetrical distribution of percentages of A (skewness: -0.063), 

B (skewness: 0.357), and C (skewness: 0.001). Still, Spearman’s rho for 

%A vs. %C (n = 200) was -0.956 (p<0.001); %B vs. %C: -0.466 

(p<0.001), and %A vs. %B: 0.206 (p = 0.003, however with a poor 

scatterplot, not shown). Since %B is small (1.5 -3.3%), the equation %C 

= -%A + (100 - %B) might be roughly approximated to %C = -%A + 

100, possibly explaining the negative %C vs. %A association. Example 

2: A and B 1 – 15; C 0.10 - 0.15, i.e. two high- number/broad-range 

variables and one low-number variable. In this case we have a near- 

symmetrical distribution of the percentages of %A (skewness: -0.081) 

and %B (skewness: 0.068); however, with a high skewness of %C, i.e. 

3.506. Correlation between percentages of A and B: rho = - 0.999 

(p<0.001, n = 200); %C vs %A (B) = 0.024 (-0.044), p= 

0.738 (0.535). To explain the high positive skewness of %C we refer to 

the considerations outlined above, encountered when having a low- 

number variable with narrow distribution (C) relative to A and B. The 

negative correlation is well explained by the equation %B = - %A + (100 

- %C) which can be approximated %B = - %A + 100 since %C is small. 

Thus, we may obtain an inverse relationship between %A and %B, 

irrespective of lack of skewness of these percentages. Therefore, 

skewness seems to be involved in many – but not all - correlations 

between relative amounts of three positive scale variables. Studies are 

currently in progress to further investigate the association between 

skewness and correlations, using real data on fatty acids. 

 

Additional comments on the correlation between percentages 

 

It is not surprising that percentages may be correlated, if they are 

computed from the same sum. Indeed, as early as in 1897 Karl Pearson 

[14] reported that there will be a spurious correlation between two 

indexes having the same denominator, even if the variables used to 

produce the indexes are selected at random with no correlation between 

them. However, the present analyses with random numbers show that 

significant correlations between percentages of the same sum are not 

always obtained, and correlations may be positive or negative 

depending on the distribution (range, variability) of the variables. That 

ranges are crucial for the outcome was suggested by the presented 

theoretical reasoning, and substantiated by appreciable changes in 

scatterplots and correlation coefficients when changing ranges of the 

variables. Furthermore, range-/variability - dependent skewness of the 

frequency distribution of the percentages seems to be involved in many 

of the correlations between percentages. 

 

The background for carrying out the present analyses was our previous 

work on the relationship between diet and fatty acids, measured in total 

serum lipids of human subjects and rats, and in breast muscle lipids of 

chickens [1, 15, 16]. In these studies we observed many highly significant 

correlations between percentages of particular fatty acids. For example, 

percentage of oleic acid correlated negatively with percentage of 

arachidonic acid, whereas the relative amount of EPA (DPA, DHA) 

correlated positively with percentage of arachidonic acid. Based upon 

our previous results we suggested the existence of a Distribution 

Dependent Regulation of the association between relative amounts of 

fatty acids [1- 5]. 

 

The present analyses suggest that regulation of the concentration range of 

variables like fatty acids could be a fine-tuned mechanism to govern the 

association between relative amounts of variables, e.g. fatty acids. It is 

tempting to speculate whether the mathematical rules governing Distribution 

dependent correlations might have general relevance, for example in 

nutrition, biology, physics, chemistry, and in social sciences. Thus, if we 

know distribution (range/variability), then we may possibly predict whether 

or not relative amounts are positively or negatively associated, or non-

existing. The present work adds that skewness of the distribution of 

percentages may be involved to explain such correlations. 

 

Limitations of the study 

 

The present computer experiments involve only some examples of many 

possible distributions (ranges/variabilities) of scale variables. It would seem of 

interest to include other distributions as well, preferably those encountered in 

physiology and pathology. Although the mathematical rules governing the 

association between skewness and correlations seem reasonably well 

accounted for in the present work, we do not know the possible physiological 

applicability of the results, e.g. as related to diet, distribution of variables in 

organs, tissues, cell compartments, and in various species, including man. 

Future work in this field should include studies to explore whether (to what 

extent) Distribution dependent correlations really are used as a physiological 

regulatory mechanism. Furthermore, more general mathematical models 

should be developed, suitable to predict positive (negative) correlations 

between percentages. Such rules should also serve to define the detailed 

requirements needed to obtain “Turning-Points” between positive (negative) 

and negative (positive) correlations. 

 

Conclusion 
 

Fatty acids are important in nutrition and health. The present results suggest 

that skewness of the frequency distribution of percentages of positive scale 

variables (like fatty acids) may govern whether the relative amounts will be 

positively or negatively associated, or not correlated. The driving force of the 

skewness is differences in range/distribution between the variables, and might 

- at least partly - serve to explain the previously suggested phenomenon of 

Distribution Dependent Correlation, which could be a novel regulatory 

mechanism in physiology. However, skewness is not an absolute requirement 

to obtain such correlations. 
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