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Abstract 

Neural architectures that are operative in higher order cognition, including consciousness, memory, and motor planning, 

undergo complex changes in global organization during neurological disease. Increasingly, neurostimulation is therapeutically 

used for restoring these functions, although the mechanisms of restoration are largely unknown. Extant studies reveal, on the 

other hand, that non-linear and dynamical principles govern global brain organization, seen in operational features such as 

persistence, stability, flexibility and non-localization that are likely to be evoked by neurostimulation. These dynamical 

features are instantiated in neural oscillations, a key mechanism regulating brain function and communication. Due to 

stochastic influences, oscillator synchronization and desynchronization exhibit limit cycle attractor dynamics, which are 

characterized by persistent phase modulation rather than fixed point, stationary phase locking. Phase modulation governs 

information exchange by temporally gating transfer and guiding the trajectory of information distribution. Activation of 

attractor forces by modest input drive induces dynamic, phase difference detuning that results in phase preference shifts, 

whereas strong input drive induces low stability phase relations that promote oscillator dissociation and new pair formation. 

These dynamical features of oscillator behavior are likely to facilitate information transfer to neural networks during 

neurostimulation of higher order functions. 

Keywords: neurostimulation; phase modulation; limit cycle attractors; neural communication; information transfer; neural 

oscillations; weakly coupled oscillators 

 

Introduction 

Neural architectures that are operative in higher order cognition, like 

consciousness, memory, and motor planning, undergo complex changes in 

global organization during neurological disease. Metastability indices of the 

default mode network in Alzheimer’s dementia, for example, are reduced in 

decoupled, desynchronized states, revealing that the disease significantly 

reduces the brain’s ability to entrain regional dynamical activity [1]. In the 

case of epilepsy, seizures typically entail various sequelae, such as brief 

changes in perception and behavior [2], mild convulsions [3], and temporary 

loss of consciousness [4]. While the neurophysiological factors leading to 

these sequelae are currently unknown, it is known that epileptogenesis 

affects brain areas well beyond the initial seizure foci [5], implicating the 

involvement of large scale brain interactions. Consistent with these 

observations, functional connectivity is impaired in large scale brain 

networks extending both bilaterally and via subcortical structures [6,7].  

Therapeutic interest in restoring these cognitive functions has in recent 

decades focused on neurostimulation, which can modulate neural activity by 

targeted electrical and/or magnetic stimuli [8]. Originally used chiefly for 

motor disorders neurostimulation is increasingly employed for a wide range 

of neural disorders, including epilepsy as well as psychiatric dysfunctions. 

For the most part, mechanisms evoked by neurostimulation are unknown. On 

the other hand neuroscientists have made great advances in understanding 

how brains are able to sustain function and to generate the wide variety and 

flexibility of behaviors displayed by humans and animals. Although a 

complete understanding of human cognition remains a distant objective, 

these studies show that neural operation is governed by non-linear dynamical 

principles, which feature functional distribution, persistence, stability, and 

flexibility, despite the presence of significant background noise [9,10]. 

Considerable evidence now suggests that these mechanisms emerge from 

functional elements that can be assembled and reassembled to sustain 

cognition [11], which appear to be the basis for higher order neural 
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architectures. Hence, the restoration of diseases such as epilepsy is likely to 

depend on the reassembly of these dynamical building blocks to their normal 

operative organization. 

Extant studies suggest that among the chief mechanisms in which these 

dynamical elements are instantiated are brain oscillations, which exhibit 

attractor like features [12]. Oscillators, for instance, are naturally cyclical, 

hence they are repetitive and rhythmic. Moreover, they resist change when 

perturbed, a phenomenon that is especially evident during synchronization 

[13]. Significantly, oscillations have been shown to be involved in many 

aspects of brain function [14], like that of memory consolidation, and are 

likely to be the basis of information transfer in brain communication. Singer, 

notably, proposed in the 1990’s the then novel thesis that information 

transfer entailed the combinatorial properties of brain oscillations [15]. Due 

to their ability to undergo synchronization and desynchronization with other 

oscillations, they are capable of participating in a virtually unlimited number 

of representations, a capability that overcame the theoretical constraints 

posed by the earlier Hubel and Wiesel model, with limited coding variety. 

Further developments have revealed that the temporal patterning of neuronal 

discharges by means of delay coupled oscillator networks enables the 

formation of select relations between distributed assemblies of neurons [16], 

which has suggested an even broader potential for representational options 

by the introduction of variations in temporal sequencing.  

 Significantly, disease states have been shown to modify oscillatory 

patterning. In the case of epilepsy, epileptogenesis frequently involves long 

distance oscillatory interactions that are posited to affect consciousness [17]. 

In related findings cross frequency coupling between epileptic electrical 

activity and slow brain oscillations - thought to mediate interareal 

coordination of brain activity - [18] has been observed.  

While restoring normal function to altered disease states is likely to involve 

changes in the basic patterning of oscillatory elements, modifying this 

patterning has posed a difficult challenge due to the dynamic and complex 

environment in which these elements are embedded. For neurostimulation 

precise temporal and spatial resolution constitutes  an  ideal  objective,  with  

minimal  interrogation of target oscillators. However, due to the dynamic 

nature of the oscillator field the effects of carefully circumscribed stimuli can 

be short-lived [19]. Critically,  such impact is highly dependent on the state 

of the neural field. Because of the field’s dynamic character, many 

perturbation paradigms have opted to use either a very strong pulse, 

essentially resetting and disrupting the activity of the target network, or to 

use a continuous or repetitive pulse in order to establish and maintain a 

desired effect. For example, one study [20] that entrained a local neuron 

population with a 40 Hz train of pulses showed that both the neural 

population response and animal behavior depended on the phase at which the 

stimulus arrived at the population. While these studies illustrate effects 

introduced by stimulation, a number of concerns become apparent with these 

regimes due to the dynamic nature of brain activity. Stimulation can, for 

instance suppress any ongoing local processing and so interfere and 

contaminate relevant neural signals. The introduction of stimuli, moreover, 

clearly affects the stability of oscillator associations, modulating information 

transfer in unexpected ways. 

Indeed, modulating dysfunctional oscillatory states is likely to require 

accounting for their dynamical properties; this is to say that because these 

states are governed by dynamical principles, their manipulation will require 

interventional protocols that incorporate these principles during stimulation 

by modulating, for example, the stability of oscillator interactions during 

synchronization and desynchronization. Beyond the dynamic features 

instantiated in these mechanisms it will also be necessary to account for how 

dynamical principles underpin functionally relevant activity. It is posited, for 

instance, that oscillatory synchronization functions to direct communication 

within the brain; hence, how dynamical principles govern the directing of 

information transfer will need to be accounted for in restoring the functional 

features of cognition. Accordingly, this paper will explore how modulatory 

input can influence the dynamical properties of oscillator interactions that 

govern information exchange and computational flexibility. 

 

(2) Dynamical Activation States in Oscillatory Structures 

 

Dynamical principles governing neural organization  

 

Subject to persistent internal as well as sensory and motor activity, the brain  

is influenced by many sources that tend to change its physical state globally 

as well as regionally. This, coupled with the multifunctionality of most brain 

domains, means that as a general rule any given brain region is continually 

exposed to multiple perturbations. To preserve stability and sustain 

functional operation neural systems have evolved dynamical mechanisms 

that assist in resisting spurious input and maintaining organizational order. 

To conceptualize these mechanisms, changes in the state of a given region 

may be conceived in terms of a state variable that changes as a function of 

the perturbations experienced by that region. Defined in this way, and for the 

simple case of a constant stimulus with no other influences occurring within 

a region, a variable reflecting the system state will grow unabated. While 

such constancy is clearly unphysiological, a similar result is also obtained in 

cases involving variable and spontaneous perturbations, a condition endemic 

to the brain. In this latter case, the system state fluctuates in response to the 

ongoing noisy influences. With time, the output of the system will likewise 

continue to grow unchecked; in other words, as long as noise is experienced 

the value of the variable reflecting the system state will continue to grow and 

experience no negative change. Similarly, in all circumstances the rate of 

perturbations will also be positive. Relating this latter parameter to the state 

variable provides a measure of how much the system changes as a function 

of its prior history and so provides a measure of the influence of the system 

state on inputs that it receives. 

Mathematically, such a relation can be expressed as: 

   du/dt = u ̇(t) = u (1) where the rate of change of the state, represented by 

du/dt is a function of the instantaneous value of the state variable [9] 

In this expression the effect of perturbations is simply added to the prior 

value of the state variable and remains positive with spurious input. 

However, because uncontrolled inputs can have untoward effects on 

behavior and bodily regulation, such a condition is clearly incompatible with 

organized cognitive function; hence, capacities for maintaining stability and 

regulating the changes that do occur are required by the nervous system. The 

brain, particularly, must have mechanisms that both monitor the existing 

state of a domain and correct unwanted input affecting its function. That is, 

the capacity to correct for spurious input and restore the system to its original 

state must be defined in relation to the value of the system state.  

Abstractly, this capacity may be described by relating the rate of change of 

the system to the deviation from a system resting value. Mechanisms 

enabling this capacity thereby return the system to an established set point 

when perturbed, and so oppose changes due to perturbations. Mathematically 

this may be written as: 
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du ̇(t)/dt = −(u(t) – b)  (2)  where b is also a function of the system state and 

negative.  

In this expression the resetting force that returns a system response towards 

the system’s resting level thus depends upon the current activation relative 

to the resting level b. This latter is oriented in the opposite direction so that 

when the activation is greater than the resting level, the rate of change is 

negative, and when lesser the rate of change is positive. In both cases the 

change is always directed to a point of stability. 

While the description of these mechanisms is mathematically abstract, their 

dynamic features are very likely instantiated in physical mechanisms 

occurring during neural activity, since changes observed in neural state 

variables within the brain are known to be transient and to return to their 

resting state level after having been driven out of it by perturbations [21]. 

For the attractor like behavior described above, network outputs are not 

determined by the inputs alone, but are also affected by the network state, 

which in physiological circumstances is often measured by neuronal firing 

rates, on the premise that there is a consistent relationship between the 

evolution of a neuron’s spike rate over time and that of some external feature 

of the environment, behavioral output, or brain process. This relationship is 

generally conceived in terms of a ‘tuning’, where maximal firing rates are 

related to certain optimal conditions and where lesser firing levels reflect 

feature dimensions located at a given spatial or non-spatial distance from this 

optimum. Hubel and Wiesel have shown, for example, that many neurons 

fire maximally in the visual cortex in response to particular directions of 

movement, and much less so apart from these directions. Input in the form 

of firing rates thus modifies the internal state of a network.  

Due to the dependence of network output on its prior state, networks in which 

input is relayed directly forward to other networks, i.e., feed forward 

organizations, are unlikely to support such dynamic activity. Outputs 

affected by the system’s prior state require instead a feedback organization 

that returns the output to the network, where further changes in output are 

determined by the network’s current state. Significantly, most networks in 

the brain – some 95% - are known to employ negative feedback, a revelation 

of the importance of this type of organization to brain function [22]. 

Dynamic features of neural oscillators 

One of several rhythmic elements in the brain, neural oscillators are 

distinguished by attractor like properties [22]. They are stable, resisting 

influences that tend to distort them, before returning to a preferred 

configuration. Additionally, they are capable of tracking stimuli that result 

in their occupation of new phase relations. Finally, they can undergo 

transitions from preferred oscillatory interactions to relations with alternative 

oscillator partners. Beside these properties, they are known to operate in 

many brain functions, where they are proposed to underlie mechanisms of 

information transfer [23]. The instantiation of dynamical properties in neural 

oscillators, therefore, appears to be a key mechanism by which dynamical 

principles become instantiated in brain function.  

Oscillations have been known for decades, chiefly through observations of 

electroencephalogram (EEG) signals that are thought to reflect global 

electrical patterning. Recorded externally in the EEG, they appear as small 

amplitude, rhythmic and intermittent signals that are poorly localized 

spatially. When recorded subdurally from the surface of the pia mater in the 

electrocortigram (ECoG), by contrast, a variety of brain rhythms can be 

detected across different behavioral states [24]. Locally, circuit oscillations 

can arise from the intrinsic oscillations of constituent neurons, or from the 

circuit connectivity, or from a combination of the two. In general, these 

network systems are composed of neural pools with fast positive feedback 

and slower negative feedback that functions to generate oscillations [12]. 

One way in which this may be conceived is in terms of an initial fast 

excitation that drives up neural firing, e.g., through positive feedback, until 

a slower inhibition is recruited to bring down population activity. As 

excitatory drive to interneurons wanes, the network begins to overcome 

inhibition and the next cycle begins again, leading to repetitive rhythmic 

behavior [25].  

 Unlike fixed point attractors, however, oscillating networks behave as limit 

cycles, which appear as closed loops in plots of state variables against time 

[26]. Mathematically, a limit cycle forms a closed trajectory in phase space 

having the property that at least one other trajectory approaches it 

asymptotically, either as time approaches infinity or as time approaches 

negative infinity. Since the limit cycle is determined by the system state over 

time, perturbations that modify the system state can either translate the cycle 

along the state axis, shifting the cycle to a new attractor state – that is, as a 

function of amplitude - or along the horizontal axis as a function of time 

along the limit cycle - that is, as a function of the limit cycle phase. The limit 

cycle trajectory therefore describes the eventual periodic behavior of the 

system, where small perturbations from this closed trajectory are induced by 

the system to return to it. Perturbations affecting the time axis are often 

regarded as independent of the position along the time cycle; that is, those of 

similar magnitude induce a phase shift of similar magnitude regardless of the 

position along the cycle where they are introduced. Conversely, 

perturbations of dissimilar magnitude induce correspondingly greater or 

lesser phase shifts. Very strong stimuli, on the other hand, shift the limit 

cycle vertically, resulting in new attractor states. Oscillators are particularly 

distinguished by their ability to combine with other oscillators through 

synchronization, and to dissociate and form new pairs through 

desynchronization. Dynamically, oscillator pairs can reduce to fixed point 

attractors, achieving maximal points of stability at complete phase 

alignment. In the noisy environment of the brain, however, oscillator pairs 

become themselves new limit cycle attractors that occupy new limit cycle 

trajectories.  

(3) Information transfer is governed by dynamical 

properties 

While neuronal ensembles giving rise to oscillations have evolved dynamical 

principles to ensure the stability of elementary functional units, 

communication between neurons and networks remains essential to higher 

order cognition and the generation of behavioral variety. Hence, brain 

function must also rely on dynamical principles for information capture, 

which is implicit in the interactions between these units. By extension, it is 

likely that abnormal brain functioning can be traced to aberrations in 

communication that are influenced by these principles and which will 

therefore need to be overcome in neurostimulation regimes. 
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Information capture in attractors 

Dynamically, information capture may be conceptualized from the 

perspective of input to an attractor, which results in an alteration to the 

attractor state (although the precise form of neural information is debated, it 

is generally agreed that some form of activity modification must occur in 

sender receiver neural organizations) [27]. Under conditions of input, the 

stability of the attractor is a function of three parameters, the original state 

variable plus those of the resting level and the input to the system. For a 

constant input this may be described mathematically as: 

 u ̇ (t) = −u(t) + b + s. (3)  where s is the value of the input and the remaining 

parameters retain their prior designations. 

When there is no input, that is, when s = 0, the state of the system is at rest 

and equal to the resting state value; hence also, since the system is at its most 

stable point, the rate of change of state is also equal to zero. However, with 

input – that is, when s has a positive or negative value - the overall value of 

the system state is changed from its initial resting level by the value of s. The 

value of the system state when the rate of change equals 0 is thus the sum of 

b + s; that is, the overall state of the system has adjusted to a new resting 

level, and the attractor is seen to track changes in input. As long as the value 

of the input remains the same, the attractor will remain at this level and 

further changes in input will modify the state value according to their 

magnitude, Typically, however, the input is variable, since the value of s is 

often some function of time.  

 u ̇ (t) = −u(t) + b + s(t) (4) 

The ability of the attractor to track input changes means that in these 

circumstances the system state will reflect the value of the continuously 

changing variable.  

Besides tracking input changes, attractors receiving sufficiently strong input 

can undergo transitions to new attractors; that is, they can display decisional 

behavior, shifting from one attractor to a second and vice versa. For the 

special case of self excitation of a network, for example, strong inputs induce 

a state of self excitation through recurrent connections, which tends to persist 

even when input levels are reduced [9]. Dynamically, this can be 

conceptualized as the induction of a second attractor state, which itself resists 

the changes incurred by reduced stimulus input. Moderate input stimuli, 

however, are insufficient to induce self excitation and the first attractor 

remains occupied; hence, the system state is capable of occupying two levels, 

depending on the magnitude of input received. The ability to transition 

between attractor events, thereby affords the computational possibility of 

performing decisions. 

Information capture in oscillator attractors 

In like manner, attractor like properties govern information capture in neural 

oscillators. However, as a limit cycle the dynamical properties instantiated 

in oscillators are described by time variable functions. Instead of a single 

resting state level, the resting state varies as some time dependent function. 

Since oscillators are periodic, this function is described in terms of a cycle, 

where the state value is related to the proportion of time traversed through 

the cycle (usually given as a function of the sine of this value). Moderate 

inputs to such attractors modulate the resting level, therefore, as a function 

of oscillator phase; that is as a function of the temporal position within the 

cycle.  

Because of the cyclical nature of the oscillator, the detection of a perturbation 

typically means that the phase change must be gauged with respect to another 

cyclical event [13,22 ]. Moreover, discharging the perturbation to 

downstream neurons requires that the receiving network be modulated in 

some fashion, generally attributed to spike timing dependent plasticity that 

modulates phase changes in another oscillator. Accordingly, information 

transfer is usually posited to involve oscillatory interactions, with the sending 

oscillator tending to modify the phase and spike generating period of the 

receiver. The prevailing thesis for information transfer via oscillatory 

interactions, the Communication through Coherence theory (CTC), posits 

that transfer occurs only when the phases of each oscillator become aligned 

[13, 28 ]. According to this thesis, the sensitivity of the receiver assembly to 

the conjunction of phases is maximal during full synchronization.  

Premised on Huygens 17th century observation that pendulum clocks [29,30] 

adjust their rhythms with respect to each other, the tendency to synchronize 

- where the oscillators have a preferred phase-relation with respect to each 

other and that they adjust their phases as a function of their phase difference 

- implicates the presence of native forces in neural networks, which tend to 

adjust the phases between the two to achieve a point of maximum stability. 

A new attractor is therefore generated from the combination of two limit 

cycles; hence the process of combining oscillators is itself dynamical and 

exhibits attractor behavior. The phase adjustments observed during 

synchronization (and desynchronization) can be described by a phase 

response curve (PRC) [30, 31], which reflects the mutual forces that coupled 

oscillators exert on each other depending on their relative phases.  

The PRC thus defines how much a given force exerted by one oscillator at a 

given phase will delay or advance another oscillator’s phase, as a function of 

the latter’s phase. Thus, the PRC also defines which phase-relations among 

oscillators occur preferentially, thereby representing attractor points in the 

phase-relations of the oscillators. For phase synchronization, the attractor 

point along the phase response curve occurs when the oscillators’ phases are 

most aligned and the force between them is least. By extension the greatest 

force is experienced when phase differences are maximal. Phase response 

curves, accordingly, document the variation in stability experienced by the 

two oscillators as they move through a phase precession cycle in their 

progression toward phase alignment. In addition to native coupling forces 

that strengthen the bond between oscillator pair members, intrinsic frequency 

differences exert separation forces between pair members. Such ‘detuning’ 

forces can be attributed to an innate cyclical momentum possessed by each 

oscillator. Due to the innate resistance to frequency change, detuning 

opposes the coupling that occurs during synchronization.  

Both detuning and coupling forces are incorporated in the Adler equation, 

which has been shown to provide a mathematical description of the chief 

forces affecting oscillator interactions [13]. 
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    d(t)/dt. =  (t)  +. Ksin (t). +. Np  (5) 

where d(t)/dt. is the instantaneous rate of precession; (t)  is the time 

evolution of the frequency difference of the oscillator pair members; Ksin 

(t) is the coupling variation as a function of time; and Np is the phase 

variation due to network noise 

For phase synchronization between oscillators with nearby frequencies, that 

is, for oscillators within a given ‘frequency band’, the Adler equation 

accounts for the cumulative tendency toward synchronization [13]. In the 

absence of other influences the process of synchronization can be described 

deterministically. Modulating the forces, and so influencing how information 

capture affects their pairing, however, are significant influences on 

synchronization that can be attributed to intrinsic noise as well as potentially 

additional factors. As will be argued below, the effect of these additional 

factors is to prevent full synchronization, calling into question the 

mechanistic basis of the Communication through Coherence thesis and 

suggesting alternative mechanisms that enable information capture in 

oscillator networks.  

Full synchronization, termed phase-locking, can be regarded as the 

constancy of the instantaneous phase-relation between oscillators. This 

means that there is no phase precession and that the instantaneous phase of 

one oscillator always maintains a uniform relation with the instantaneous 

phase of the other (phase-locking has a value of 1. Its observation in some 

examples has served as the basis of the postulate that information transfer 

occurs only when oscillator phases are fully aligned. Neural synchronization 

in the gamma-range, for example, has been observed in subcortical [32,33] 

and cortical areas [34] and gamma rhythms emerge in the visual cortex 

during processing of visual stimuli [35,36].  

Information capture in oscillators is unlikely to entail 

strict phase locking  

The requirement by the CTC theory for information transfer to occur by 

phase locking however, means that the transfer of information requires a 

stationary relation between the two oscillators. Dynamically, this can be 

interpreted as the arrival of the two at a point of maximal stability in which 

detuning and coupling forces have achieved a balance. Yet this also implies 

that input drive is no longer modifying a second oscillator through the 

exertion of a ‘force’ since any effects on the second oscillator introduced by 

input drive have already been attained prior to phase alignment. The absence 

of such a force suggests, rather, that phase-locking is unlikely to be either 

completely synchronous or completely asynchronous in neural operation, a 

condition in which the member of oscillator pairs continually precess with 

respect to each other. This therefore implies that phase-locking can be, 

indeed is, typically both incomplete and of different magnitudes. 

In fact, a number of physical factors contribute to prevent the perfectly 

phase-locked state, including factors like the extent of phase alignment in the 

population [13], frequency modulation due to the phase dependency of the 

coupling constant [37], intermittency of alignment [38], and oscillator 

disruption that may be occasioned by excessive coupling strength [39]. 

Neural oscillations, for instance, exhibit stochastic behavior ,  where  neural  

signals  go  in  and  out  of  synchrony   [13]   with episodic   

desynchronization.   

Noise, particularly, is intrinsic to neural activity, and can be expected to 

exacerbate the degradation of partial phase locking occurring between 

oscillators during detuning intervals (or neural networks approximated by 

oscillators) [19]. There is, for example, indirect evidence that for cortical 

gamma oscillations the frequency and amplitude evolution over time is noisy 

and complex [40] and changes as a function of cortical state [41]. Noise can, 

for instance, be due to the inherent instability among neurons generating the 

network oscillation, resulting in phase variation. Synchronization of ‘weakly 

coupled oscillators’ is therefore considered in a statistical sense where a 

predominant fraction of ‘micro’ oscillating circuits determine the behavior 

of the population  oscillator;  which  is  to  say  that  the  overall  oscillatory 

distribution may be considered to have a certain phase variance range. Noise 

effects can be expected, moreover, to modulate coupling strength, shifting a 

proportion of the individual cycling circuits into a non-oscillatory range or 

other effects.   

Accordingly, phase modulation is rarely completely arrested. This means 

that the attractor generated from the combination of two parent oscillators is 

rarely a fixed point, but asymptotically becomes itself a limit cycle attractor, 

with domains of greater and lesser stability. Physically, the influence of noise 

and other effects leads to a broad range of conditions of partial 

synchronization. In this regime, oscillators display frequency differences, 

meaning that they phase precess, yet still have preferred phase-relations that 

are reflected in non-uniform phase-relation distributions. Indeed, partial 

synchronization implies a preference for particular phase-relations despite 

undergoing continual phase precession. Accordingly, information capture 

appears as dynamical and occurs as the two oscillators merge their frequency 

differences through detuning [13] Indeed, even in the hypothetical case of an 

absence of noise, it is unlikely (due to detuning) for synchronization to be 

perfect due to the interval required for detuning (detuning is not 

instantaneous), and imperfect synchronization can be expected to generate 

changes in phase relations and frequency among oscillators over time. 

Preferred phase relations, wherein information is likely to occur, may be 

conceptualized by comparing theoretical behaviors among synchronous, 

asynchronous, and partially synchronous regimes [37], seen in Figure 1. 
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Figure 1. Phase precession modulation during oscillator synchronization. Synchrony between two oscillators is governed by two factors, the difference 

between the intrinsic oscillator frequencies and the coupling strength between them. The individual phase evolution for each of two oscillators A and 

B is mathematically described:   dΘA/ dt = wA(t)  and  dΘB/ dt = wB(t); From TWCO theory, the evolution of the phase precession angle, ΘP, is:dΘP/ dt 

= (wA(t) - wB(t) ) + Ksin (ΘP(t)) + NP  (Adler equation). A,D. Rigid phase locking occurs when the rate of precession equals 0 and the phase difference 

angle is a constant value. B,E. The rate of precession is constant and oscillation precesses through all phase angles. C,F. With coupling the precession 

rate is variable and described by the sine of the phase precession angle. Slowing occurs when the phase difference angle is small, termed the phase 

overlap range, and speed increases when the phase difference is large. Ongoing frequency modulation dictates that information transfer occurs within 

a region of phase overlap rather than at a point of phase alignment [13]. 

In a complete or perfect phase-locking state, the phase-relation is constant 

(no phase precession) and the synchronized oscillators do not have a 

frequency mismatch. Here, perfect synchrony is observed in phase time plots 

as a constancy of phase difference over time and a rate of precession equal 

to zero. This is to say that under full phase locking, the intrinsic frequencies 

of both oscillators have aligned with to respect to each other, so that their  

intrinsic frequencies  are  equal.  This  constancy of phase may be  

distinguished from the case where synchrony is absent; that  is,  where  the  

phase locking  equals  0  and  the  intrinsic  frequencies of the two oscillators 

do not vary with respect to each other; accordingly, the phase difference is 

described by a linear function and the rate of change of the phase difference 

between the two  is constant. An intermediate phase locking value, on the 

other hand, means that the predictive value of a given oscillator is less than 

1 (but more than 0) for correctly yielding the value of the other, and the 

oscillators can be expected to precess with respect with each other. 

Precession, here, will vary as a function of the phase angle difference . 

Coupling is strongest at the preferred phase angle, i.e., where the phase 

difference is minimal, and the rate of phase difference change  is  least.  For  
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weakly  coupled  oscillators  the  instantaneous frequency change - the rate 

of phase change over time - remains above zero at the preferred phase angle 

and rises as the coupling approaches its minimum value where the phase 

angle difference is maximum. The introduction of coupling, therefore, 

functions to modulate the rate of phase precession, increasing it for greater 

phase differences, and slowing it when the phase difference is least. 

The fact that the dominant state is characterized by incomplete phase-

locking, and therefore phase precession, entails that oscillators in this state 

will traverse all possible phase-relations over time. [13]. It means further that 

depending on the instantaneous frequency difference between the oscillators 

and the coupling constant, the instantaneous phase-locking can vary between 

0 and nearly 1at points throughout the precession cycle, as seen in Figure 1. 

Hence, the limit cycle attractor formed from their combination will also 

continually cycle through greater and lesser domains of stability as phase 

precession is modulated.  

Accordingly, no periods of phase locking are likely to occur during oscillator 

pairing, a physical circumstance that is at odds with the Communication 

through Coherence thesis of information transfer. The stationary model 

proposed by the CTC, for example, which assumes that the underlying 

oscillatory dynamics are stable at a fixed phase-relation and shared 

frequency, is reflected in the frequent use of stationary methods for assessing 

synchronization, such as spectral coherence [13] that, accordingly, are 

purported to assess information transfer. 

(4) Information transfer entails dynamical changes in 

oscillator stability 

Consistent with ongoing changes in phase relations it has been observed that 

gamma oscillation frequency fluctuates strongly over time [42] and that 

different cortical locations can express different preferred frequencies at a 

single moment in time [43]. Synchronization is thus primarily a non-

stationary process [44] because oscillators mutually adjust their rhythms 

through phase shifts (i.e. through changes in the instantaneous frequency).  

Given that stationary periods of phase alignment are absent during 

oscillatory mergers, hence, this raises the important question of which 

mechanisms underlie information transfer and highlights the role of phase 

modulation as potentially key to mediating communication within and 

between neural networks. The dynamic influence of detuning, particularly, 

apparent in the instantaneous rate of phase change occurring during 

precession, is mechanistically more consilient with information transfer that 

occurs within a stochastic neural environment, which promotes ongoing and 

variable phase modulation. For example, it has been shown that the 

frequency preference of gamma oscillations shifts as a function of input 

drive, both in experimental studies [45] and in computational studies of 

gamma-generating networks [46]. Moreover, changes in the difference in 

input drive between two oscillators lead to corresponding differences in the 

frequency difference between the oscillators. Therefore, input drive regulates 

the frequency preference of a network; hence, it also induces oscillator 

detuning [13]. Cumulatively, these observations support the notion that 

frequency modulation is key to information exchange, especially within 

gamma oscillatory networks, where the function of inputs is to modulate 

inter oscillator stability through adjustments in the internal phase relations of 

the oscillator pair members. 

As noted, input drive has the effect of shifting oscillatory phase, with inputs 

of equal magnitude adjusting the phase equally regardless of the point along 

the cycle at which inputs are introduced [47]; hence, detuning forces 

experienced by oscillator pairs are proportioned to the magnitude of the input 

received. This observation is a strong indication that information transfer is 

related to the dynamic events occurring during oscillator pairing as the two 

partners synchronize their relative frequencies. Attractor forces evoked by 

detuning, accordingly, underlie the capture of input drive, possibly through 

phase preference shifts [13] or other, as yet, undetermined physical changes.  

Limit cycle formation during oscillator pairing, in consequence, can be 

expected to exert multiple effects on information transfer, dictating how, 

when, what and where information is transferred. This means particularly: 

how, detuning mechanisms promote information transfer; when, limit cycle 

formation imposes temporal restrictions when information can be exchanged 

within the precession cycle; what, input drive is selected according to its 

magnitude and origin; and where, information is exchanged via new attractor 

associations.  

  Detuning mechanisms promote information transfer (How) 

Input drive dictates that phase advances correspond to the magnitude of the 

captured stimuli, shifting the phase precession angle and the extent of 

detuning. Accordingly, detuning dynamics govern the processing of input, 

adjusting frequency preference output during synchronization mergers. 

 Limit cycle features determine when information transfer takes place 

(When) 

Occurring preferentially during minimal phase difference means, in the first 

place, that information transfer is dictated by the properties of the phase 

precession cycle – that is, transfer does not take place continuously, but 

rather occurs during a restricted temporal domain within the precession 

cycle, gating the release of information to a preferred period within the phase 

overlap domain of the cycle.  

Significantly, temporal gating appears to also function in cross frequency 

coupling, where it is posited to structure information transfer [23]. Gating in 

this latter instance is hypothesized to generate syntactical rules governing 

information decoding [23]. Such rules determine semantic content from a 

limited number of elements allowing for the formation of a multitude of 

combinations. In the case of neuronal communication it is hypothesized that 

the fundamental element of neuronal syntax is an assembly of neurons 

discharging together in a cycle. Rhythmic inhibitory volleys provide for 

alternating windows of suppressed and heightened excitability that structure 

information flow by transiently silencing principal cell output Its occurrence 

in narrower frequency bands as seen here suggests that information gating is 

a more generalizable mechanism that may be evoked across a hierarchy of 

syntactical organization. In both instances phase modulation is likely to 

govern gating processes, which is a result of the detuning that occurs during 

coupling.  
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  Determining which and how much input drive is selected (What) 

Input drive, as noted, has the effect of shifting oscillator phase and so 

modifying the precession angle, i.e., the phase difference angle, between the 

members of the oscillator pair. Because the phase shift is proportioned to the 

magnitude of the input drive and also to the magnitude of detuning – which 

is detected in frequency preferences dictated by detuning - this latter has the 

effect of quantitatively assessing input. 

Consistent with this, it has been proposed [23] that for effective 

communication there is a requirement for limiting information content to 

useable packets [23]. This may be defined as the maximal quantity of 

information transferred per event, here determined by the period of the phase 

precession cycle. Hence, the cycle period dictates the upper limit for 

information content. From the point of view of the downstream (“reader” or 

“integrator”) target cells, the input drive per event represents the collective 

activity of upstream neurons, which must fall within the [48] time-integrating 

window, which are combined as a unitary event. Spikes of upstream neurons 

which fire outside the integration time window constitute elements of 

another event or different source [23]. The capture of input drive, 

accordingly, can vary from a minimum to a maximum value, the latter 

determined by the upper temporal bound of the precession cycle. 

Limit cycle features enable computational variability via new oscillator 

associations (Where) 

Due to stability variation along the precession cycle, large inputs timed to 

coincide with points of minimal stability – e.g., wide precession angles - can 

exceed the ability of the attractor pair to retain input, destabilizing their union 

and leading to new attractor combinations. With sufficient input 

synchronization forces will no longer sustain the limit cycle constructed by 

the oscillator pair and the lead oscillator will instead construct a new pair 

composed from the lead oscillator and its new partner. Indeed, the fact that 

phase modulation of the oscillator pair progresses through points of maximal 

and minimal stability is naturally structured to enable separation of the pair 

at points of minimum stability. By extension, regulation of separation is 

theoretically achievable through timing mechanisms that advance phase and 

modify position along a stability axis [20]. 

Consistent with this, the theory of weakly coupled oscillators (TWCO) 

proposes that coupling between oscillator members is only moderate and that 

input drive functions largely to adjust phase [49]. Dynamically, this means 

that the oscillator state varies primarily along the time axis, and that input 

drive that significantly shifts the vertical (amplitude) axis will generate new 

limit cycle attractors [9,13,37] Significantly, synchronization properties of 

V1 cortical gamma rhythms have been shown to be predicted by TWCO 

theory [13]. Information transfer, accordingly, is largely limited to moderate 

input drive dictated by phase modulation during oscillator to oscillator 

interactions, whereas new computational features for information processing 

are acquired with strong stimuli.  

The effect of strong stimuli, therefore, is to shift the phase precession angle 

to the limit cycle boundary, a point of minimal stability, where stochastic 

input can elevate it out of its primary stability basin. Given sufficient input, 

a new limit cycle attractor is then formed with a unique trajectory and 

corresponding stability and instability domains. The new limit cycle thus 

occupies a second attractor basin, minimizing the likelihood of return to the 

prior limit cycle in analogy with fixed point attractors. The effect of strong 

stimuli is thus to generate two attractor states with distinct stability 

boundaries. For oscillator limit cycle attractors, accordingly, stochastic 

inputs have the important function of breaching stability barriers when 

proximate to large precession angle, boundary conditions; that is, only in 

response to strong stimuli. Importantly, computational abilities conferred by 

oscillator recombination, that is, by transitioning between limit cycles, can 

be hierarchically extended, enabling high level information processing and 

representation. 

Conclusion 

Neurostimulation is enjoying a widespread renaissance as a therapeutic 

medium for neurological disease. Beginning with successful applications for 

treating Parkinson’s Disease neurostimulation has also proved therapeutic 

for tremors, dyskinesia, and dystonia. Its expanding repertoire now includes 

epilepsy and stroke and such degenerative diseases as Alzheimer’s dementia, 

as well as a growing list of psychiatric diseases [8]. Deep brain stimulation 

has shown promise, for instance, in treating obsessive compulsive disorder 

and Gilles de la Tourette syndrome and to have a salutary effect on major 

depressive syndrome.  

Despite the promise of the therapy, on the other hand, its mechanisms of 

action remain for the most part unknown and their improved characterization 

is needed to advance the technology. Facilitating this characterization is a 

growing understanding of how non-linear dynamical principles govern 

neural activity, especially through the brain’s chief regulatory mechanisms, 

neural oscillations. Indeed, the organizational complexity and functional 

diversity of the human brain is unrivalled in the natural world, despite the 

presence of noise and other significant physical limitations that degrade 

signal processing, an operational order that can be traced to the instantiation 

of such principles. The understanding of how these principles influence 

oscillations can therefore be expected to advance neurostimulation protocols 

used for therapeutic applications.  

The ability to regulate information transfer to brain activity, particularly, can 

be expected to modulate functional organization directly. This paper shows 

that neurostimulation can be expected to modulate functional organization 

through dynamical events affecting stability, which can be observed in phase 

modulation and oscillatory transitions, unlike currently proposed 

mechanisms of phase alignment which are inconsistent with oscillator 

dynamics.  
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