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Abstract 

The idea that neural signaling is the basis of mental processes has a long history. We graphically summarize salient 

developments in the neurobiology of signaling, as a Timeline. In particular, we review the “tripartite mechanism” of neural 

memory, which centers on the interactions between a neuron with its surrounding extracellular matrix (nECM) doped with 

metals and neurotransmitters (NTs). Essentially, the neuron employs the nECM as its “memory material”, wherein it uses 

dopants to encode cognitive units of information (termed “cuinfo”). The NTs, which elicit bodily reactions (feelings), also 

encode past feelings as emotions, which “color” mental states in real-time and in memory.  

In the interest of developing experimental tests of the tripartite mechanism, impedance glass electrodes were covalently coated 

with an exemplar NT (oxytocin) or a sulfated tetra-saccharide analog of the nECM, were constructed and tested. The two 

types of coated, neuro-mimetic electrodes, termed “neulectrodes”, were capable of detecting metals, such as Hg+2, Pb+2, Cd+2, 

Cu+2, and Zn+2 with very high selectivity and sensitivity. The “neulectrodes” demonstrated that the chemodynamic 

interactions of metal cations with NTs or nECM-saccharide analogues can translate into electrodynamic signals. They 

experimentally validate the concept of the tripartite mechanism that underlies the chemo-electric encoding of neural memory. 
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1. Background 

Neurons are chemo- and electro-dynamically linked cells that express a 

talent of mentation and somehow encode cognitive information as the 

basis for neural memory. But details are lacking regarding the physicality 

of the neural code and where the memory trace (engram) is located. Many 

presume that memory is somehow stored in the synaptic gaps between 

neurons (Cajal, 1911; Hebbs, 1949 ; Kandel et al, 2013; Cizeron et al, 

2020), though this seems questionable from the point of view of 

persistence and theoretic credibility (Arshavsky 2006; Gallistel & King  

2009; Amit 2013; Marx & Gilon, 2012-2020). 

Some researchers developed nano- or microdevices to enable 

simultaneous, long-term, multi-site, intracellular electrical recordings 

from single or many neurons (Spira & Hai, 2013). While they explored 

the electrophysiologic aspects of synaptic signaling using sensing 

electrodes, they did not address the issue of the mental states achieved by 

neurons. Other workers suggested that memory is stored in the nucleus 

(Kandel, 2001; Josselyn & Frankland, 2015), though the kinetics of 

nuclear processes appear to be too slow and require high energy. 

The computer metaphor for neural memory exerts a strong influence on 

the field of cognitive neurobiology. Many see a direct parallel between a 

computer and the brain (Turing, 1943; McCulloch & Pitts, 1943; von 

Neumann, 1958; Arbib, 1987, 2000; Piccinini G. 2006; Giudolin et al, 

2011). 

“Computational systems are useful to describe brain processes 

mathematically”. 

- Giudolin et al, 2011 

But the metaphor is incomplete. Aside from the quite different energy 

expenditures by a brain compared to a supercomputer (i.e. 20 Watts vs 

250 megaWatts), it does not account for emotive states achieved by neural 

systems, for which there are no digital or electrodynamic equivalents. 

The idea of neural signaling as the basis of mental processes has a long 

history beginning with Galvani through Golgi, Cajal, Hebb and Kandel, 

as we  graphically summarize  in  the Timeline presented below (Figure 

1). 
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Figure 1. Milestones in the Timeline of neurobiology, acknowledging key contributors to unravelling the electrical and chemical modes of neural 

signaling. The Timeline (based on reviews: Kandel & Squire, 2000; Langmoen & Apuzzo, 2007; and our own work) emphasizes the parallel 

development of two dynamics of neural signaling: the electrical mode and the chemical mode. 

 

Subsequent to the observations of Cajal of synaptic contacts between 

neurons (Cajal, 1911), a singular contribution to the electrical mode of 

was the McCulloch–Pitts mathematical model of a lone neuron 

(McCulloch & Pitts, 1943). This approach was subsequently amplified by 

the concepts of electrical signaling expressed as “synaptic plasticity” and 

“long term potentiation”.  

The chemical mode took longer to develop, buttressed by the eventual 

confirmation of Golgi’s observation of a perineural net (PNN), identified 

as a web of glycosaminoglycans (GAGs) around the neurons, now termed 

“nECM”.  The discovery of peptidic neurotransmitters (NTs) and their 

receptors also enabled a chemodynamic view of neural net 

communication. But signaling by itself does not resolve the core enigma 

of how neurons can remember existential events.  

How is an emotive mental state encoded, stored and recalled from 

memory?  

1.1. Tripartite mechanism of neural memory 

We have proposed a tripartite mechanism for neural memory based on the 

formation of metal-centered complexes that attract neurotransmitters 

(NTs) (Marx & Gilon, 2012-2019). Neurotransmitters (NTs) elicit 

psychic states parallel to physiologic reactions. Chemically, NTs bind to 

the metals anchored in the nECM. Effectively, they combine to establish 

the neuron’s code for emotive states (Figure 2). 
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Figure 2. Icons of an electron-rich nECM metal-confinement “address”, capable of complexing with metals and neurotransmitters (NTs), 

thereby encoding a cognitive unit of information (cuinfo). Each NT endows the cuinfo (singular & plural) with an emotive quality not available in 

binary code. 

  

To encapsulate: The “neuron” marshals the components available to it, 

notably the surrounding extracellular matrix (nECM) and the dopants 

(metals and NTs) which the neuron accumulates within vesicles.  The 

neuron employs these to encode cognitive units of information, called 

“cuinfo”, metal-centered complexes within the nECM, described by a 

chemographic notation (Figure 2). This mechanism is universal, in that it 

applies to the recall function of all neural creatures, from C. elegans (302 

neurons) to homo sapien (1015 neurons). 

The term “chemotronic” refers to an intersection disciplines, such as those 

of chemistry with electronics or optics (see Khrustalev & Rozhitskii, 

2001). Here, we propose that memory links biochemical processes to 

psychological states (i.e. emotions). For example, hydrogels have been 

studied as structural entities, in terms of shear thinning, stretching, self-

healing and breaking strength. (Zhang & Khadehosseini, 2017), but have 

not been studied for “chemotronic” signaling potential for encoding 

“psycho-chemical” states.  

In this regard, consider the nECM as a 3-D hydrogel comprising a lattice 

of sulfated glycosamino-glycans (GAGs) (such as hyaluronate, 

chondroitins and heparans) which bind metal cations. The degree of 

sulfation of the GAG’s is a major factor impinging on its metal binding 

affinity. Though a number of sulfation-enzymes have been identified 

(Gamma et al, 2006; Soares, 2016; Malaeb et al, 2019), correlation 

between the neuro-saccharide sulfation pattern and metal-binding 

characteristics remains obscure. Thus, experimental evaluation of the 

metal-binding affinities of specifically sulfated saccharides remains a 

goal of material scientists, which may incidentally clarify the signaling 

properties of neurons interacting with their nECM. 

2. Results and Discussion 

Following the idea of McCulloch & Pitts (Figure 1) that described a single 

neutron in mathematical terms, we propose that the impedence electrode 

is a model for a chemo-electric neural receptor. Inspired by these 

ideas, our colleagues embarked on a program to fabricate various neuro-

mimetic impedence electrodes (“neulectrodes”) coated with materials 

available to the neuron, namely a neurotransmitter (oxytocin) or a sulfated 

tetrasaccharide analogue of the nECM. These electrodes could be tested 

for their binding affinity and selectivity to different metal cations. 

We review two published examples that use Electrochemical Impedance 

Spectroscopy (EIS) as a method to detect changes in the electrochemical 

properties of coatings of “tripartite” components. We call such 

neuromimetic electrodes, “neulectrodes”. EIS is highly sensitive to 

interactions of the electrode sensing layer with analytes, especially to 

conformational changes that result from metal binding to the surface. It 

does not depend on fluorescence, luminescence or light  absorbance 

techniques frequently used to study metal binding by biopolymers.  

2.1. “Neulectrode” type 1: NT-coated impedance sensor 

 An impedence electrode was modified in step-wise manner to covalently 

coat the sensing surface with oxytocin (OT), as schematically illustrated 

in Figure 3. 
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Figure 3. A schematic outline of the preparation of the oxytocin (OT) -coated EIS electrode. (The preparation details are described in Tadi et al, 

2017). 

The OT-coated electrode was particularly sensitive (~10-12 M) to Cu+2 and Zn+2, but showed very low responsiveness to other metal cations (Pb+2, 

Mg+2, Cd+2, Ni+2, Ca+2, Fe+3, Ag+ and K+) (Tadi et al, 2017). These results were in accord with other reports that oxytocin has great affinity for 

metals, which are cofactors in its physiologic effects (Neumann, 2007; Wyttenbach et al, 2008; van der Burg et al, 2009; Liu et al, 2005). 

 

Each neural sensor has a unique specificity for a given NT ligand 

(Neumann, 2007). Thus, the OT-coated electrode, could be described as 

“neuro-mimetic” and might become diagnostically useful in a clinical 

setting to test for trace Cu+2 and Zn+2  in the  circulating blood or lymph 

fluid of patients with multiple sclerosis, Alzheimer disorder, Parkinson 

disorder and  autism. 

2.2. “Neulectrode” type 2: Sulfated oligo-Saccharide 
coated impedance sensor 

Uniquely sulfated tetra-saccharides were prepared (Table 1) and used to 

coat the EIS electrode  

Surface to form the tetra-hyaluron glass, coated electrode (HA4-GCE) for 

testing for sensitivity to metal cations. (Alshanski et al. 2019) The hyluron 

tetra-saccharides (galactosamine N-Ac – Glucuronic acid; (GlcNAc–

GlcA)2), were prepared as analogues of hyaluron (HA), a major polymeric 

component of the nECM (Rother et al, 2016; Yoon, 2016). While 

hyaluron is not generally sulfated, its tetra-saccharides serves as a good 

analogue of the generally sulfated chondroitins (glucosamine N-Ac-

Glucuronic acid; GluNAc-GlcA)n (n≥ 2). The process for covalently 

coating the electrode with the tetra-hyluron azides (Table 1) was similar 

to that developed for oxytocin (Figure 2), using tetra-hyluron azides 

instead of oxytocin azide (Alshanski et al, 2019).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: The sulfated tetra-saccharides used to coat the “neulectrode” type 2 (Alshanski et al. 2019) 

Code sulfation pattern structure 

HA4 no sulfate  

msHA4 mono-sulfated  

dsHA4 di-sulfated (6 & 6')  
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Figure 4. Response of different HA4-GCE to 100 nM concentrations of Cd2+, Pb2+ and Hg2+ (N = 3). Black describes HA4-GCE, blue describes 

msHA4-GCE and red describes dsHA4-GCE (Alshanski et al, 2019). 

 

The high sensitivity of the electrode coated with  sulfated HA4-GCE to metals such as Hg +2, Pb+2, and Cd+2 depended on the degree of sulfation, 

indicating that the interactions of sulfated oligo-saccharides with metal ions, especially heavy metal ones, are dictated by the sulfation patterns rather 

than by the core saccharide. Moreover, it corroborates our hypothesis that the sulfation pattern of the GAGs in the nECM determines the pattern of the 

metal distribution that is used for coding the neural memory.  We hypothesized that NT (like oxytocin) could form ternary complexes with the metals 

embedded in the sulfated GAGs in the nECM, to be used for coding emotive memory. We also hypothesized that many thousands of sensors (i.e., 

GPCR, K channels, receptors, integrins), presented by the neural surface serve to “read” the cognitive information encoded by the metal -NT complexes 

in the nECM around the neurons.  

3. Conclusions 

The operational details of neural memory remain the focus of intense theoretical, modeling, basic and applied research. We have proposed that cognitive 

information received by the neuron is encoded as metal-centered complexes in the nECM surrounding the neurons. This implies that the neuron can 

form defined patterns of dopant complexes (metals and NTs) in the nECM. Moreover, it is capable of chemodynamic sensing such a pattern of metal-

centered complexes and translating this information into electrodynamic signaling to the neural circuit (Figure 5).  

 

 
 

Figure 5. Conceptual model of a synthetic neuron with a variety of “neulectrodes” embedded in a lipid membrane. The sensory output of all would 

be directed to an electronic central processing circuit (CPU), permitting a brain-computer interface. 

 

The “neulectrodes” are interesting from both fundamental and 

technological perspectives. They are truly neuro-mimetic in that they 

employ components available to the neuron. They may be useful as 

diagnostic tools or as implants for monitoring or controlling neural 

activity. 

The two types of “neulectrodes” reviewed here demonstrate chemo-

electric effects. Namely, that the chemo-dynamic interactions of metal 

cations with NTs or sulfated analogs of the nECM GAG can translate into 

electrodynamic signals. They experimentally validate the concept of 

the tripartite mechanism of neural memory. 
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