AUCTORES
Chat with usReview Article | DOI: https://doi.org/10.31579/2692-9759/141
1Department of Fashion Design and Arts, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu, India.
2 Department of Textile Chemistry, SSM College of Engineering, Komarapalayam, Tamil Nadu, India.
3 Department of Textiles and Clothing, Avinashilingam Institute of Home Science and Higher Education of Women, Coimbatore, Tamil Nadu, India.
4 Department of Fashion Design, Footwear Design and Development Institute, Noida, Uttar Pradesh, India.
5 Department of Textile Technology, Jaya Engineering College, Tiruninravur, Tamil Nadu, India.
6 Department of Textile Technology, KSR Institute of Technology and Polytechnic College, Tiruchengode, Tamil Nadu, India.
*Corresponding Author: N. Gokarneshan, Department of Textile Chemistry, SSM College of Engineering, Komarapalayam, Tamil Nadu, India.
Citation: Sona.M. Anton, N. Gokarneshan, U. Ratna, Z. Shahanaz, D.Anita Rachel, (2024), Role of Smart Textiles in Heart Monitoring, Cardiology Research and Reports, 6(6); DOI:10.31579/2692-9759/141
Copyright: © 2024, N. Gokarneshan. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Received: 23 September 2024 | Accepted: 02 October 2024 | Published: 10 October 2024
Keywords: dry electrode; electrocardiography; smart textiles; textile; textile electrode
Electrocardiography or ECG is considered crucial in the initial diagnosis and therapy for varied heart conditions so as to prevent or avert adverse conditions. It relates to the continuous and long-term measurement and monitoring of physiological signals. The drastic advances in wearable electronic technology has been prompted by the rise in requirement of the continuous monitoring of the ECG signal. The electrodes constitute the major criteria that influence the quality of signal and patient comfort in the event of wearable ECG monitoring, the electrodes are the main components that affect the signal quality and comfort of the user. This use of textile electrodes in ECG monitoring starting from the basic to the advances versions and scopes for their future use are dealt with herein. Their design methods and performance with regard to terms of skin– electrode contact impedance, motion artifacts and signal quality have also been considered. Textile electrodes are designed by integrating thin metal fiber during production provess of textile products or by coating textiles with conductive materials such as metal inks, carbon materials, or conductive polymers. The textile electrodes for ECG function through direct skin contact or by means of a non-contact capacitive coupling have been considered. A perspective is also provided for the present intensive and prospective research focused on seeking textile-based ECG electrodes having enhanced comfort and signal quality in the fields of textile, material, medical and electrical engineering.
With the rapid development in technology and the ever-increasing demands of people, conventional textiles are becoming inadequate for our uses. Traditionally, textile clothing is expected to have a good fit, comfort, and durability for use. Nowadays, these requirements are not enough due to growing competition on the market and changes in society demand supported with technological advancements. These societal demands and technological advancements led to the development of “smart textiles” [1]. Smart textiles are defined as materials that are able to change their behavior as a response to the influence of external factors or stimuli from the surrounding environment such as from mechanical, thermal, chemical, electrical, magnetic, or other sources [1,2]. Based on their level of “smartness”, smart textiles can be categorized into three subgroups: passive, active and very smart [2,3].
Passive smart textiles: textiles that only sense the environmental condition, and react to the stimuli passively, e.g., biopotential sensors. Active smart textiles: textiles that are able to sense the stimuli from the environment and respond to that particular stimulus. This can be achieved by integrating an actuator function and a sensing device. An example is a temperature-aware shirt which will automatically roll up its sleeves when body temperature becomes elevated. Very smart or intelligent textiles: textiles that are able to sense the environmental stimuli, give reaction to the stimuli, and thirdly adapt their behavior to the given circumstances. In the future, intelligent fabrics are expected to be integrated with cloud computing. For example, patients with a homecare medical device could send vital signals to their doctor to diagnose their health condition [4,5].
Smart textiles are commercially available [6] in different applications such as in sports [7], healthcare [8], vehicle industry [9], military [10], personal protection, and safety and space exploration [6]. Although smart textiles are used in all spheres of our lives, healthcare is the most remarkable market area, potentially enabling the development of new healthcare systems that can ensure significant cost reductions [11]. Due to the increasing complication of medical treatments on the one hand and the advancement of technology in the area, on the other hand, there is an emerging trend for a personalized healthcare system. Smart textiles have the lion’s share in this regard, where uses are equipped with wearable sensors to monitor their vital signs continuously and they give greater potential to users to take active control of their health as part of a preventive lifestyle which brings a reduction in healthcare cost by the early detection of health problems [5,12].
Devices that monitor physiological activities such as heart activity or electrocardio-gram (ECG, also called EKG) [13], brain activity/electroencephalogram [14], muscle activity/electromyography [15], and other health indicators such as skin temperature [16], respiration [17], breathing [18], sweating rate [19], etc. have tremendous advantages in monitoring health. ECG is the process of recording the electrical activity of the heart, one of the most important physiological signals, which contains a treasure trove of information about the heart condition and heart-related diseases, such as arrhythmia, cardiac arrest, premature atrial contraction, premature ventricular contraction, congestive heart failure and coronary artery disease [20–22]. Recently, wearable ECG devices that enable us to continuously monitor heart activity are being developed as textile-based devices. As textiles are an indispensable part of our life, this is quite convenient for handling [23]. In the review paper by Pain et al. [11], a survey on textile electrodes for ECG monitoring and the different materials used to develop textile electrodes, factors that affect their performance in the signal acquisition were presented.
This paper aimed to provide a scientific overview of textile-based electrodes for ECG monitoring, with the main emphasis on the different types of electrodes and recent advancements on ECG electrodes in general, and dry textile electrodes in particular. Developments in wearable health monitoring clothes and conductive textiles, especially for ECG monitoring, are also addressed.
Wearable electronic smart textiles can be developed by using the textile fabric itself as a sensor or embedding the sensor in textile clothes. The integration of flexible ECG sensors with everyday textiles will be convenient for handling and cost-saving purposes [11,20,51].
Instead of attaching a separate electrode like a disposable Ag/AgCl electrode, making the textile itself a sensing electrode is more interesting for monitoring the health and wellbeing of individuals demanding long-term heart monitoring. Textile-based sensors could contribute possibilities for providing more affordable, accessible, and easy-to-wear measuring devices, thus giving a greater potential to users to take active control of their health as part of a preventive lifestyle which brings a reduction in healthcare cost by the early detection of health problems. However, conventional textile products that are found in everyday garments are intrinsically electrically non-conductive and hence cannot be directly used for bio-sensing applications. Sensing or data transmission via the textile material requires the textile to be electrically conductive. Textiles can be made electrically conductive by integrating metals, carbon materials, or conductive polymers into the textile structure through several techniques at different stages (fibers, yarns, or fabrics) [48,52–58].
Wearable textile electrodes for continuous health monitoring products, as part of standard clothing, are needed to satisfy several requirements. The most important requirement is that they should have adequate electrical conductivity [11,59]. Sufficient electrical conductivity is necessary to detect even small amplitudes in the electrophysiological signals of the heart. High electrical conductivity results in lower skin–electrode impedance which is very essential during ECG measurements to acquire high signal quality [60]. Additionally, as part of standard clothes, textile electrodes should have a good visual appearance taking into account fashion aspects, and at the same time be comfortable for the wearer [61].
Furthermore, the conductive textiles should allow standard maintenance such as washing and ironing. In addition, the electrodes should be easy to wear and use, and should be as lightweight as possible, though should not hinder the users’ movement and daily activity [62]. Apart from the electrodes, the signal recording also needs interconnections and data processing and possibly an antenna, which should also be integrated (completely or partly) into the garment. After data processing, the result may then in turn be used to display information on the health status of the wearer, either to the user or to the concerned people such as their physician. All these parameters of wearable sensors make designing such products very challenging as many conflicting requirements must be considered during product development.
Depending on the coupling between the electrode and the skin, textile-based dry electrodes can be categorized into two types: contact and non-contact electrodes. In contact electrodes, the direct physical coupling is established between the skin and the electrode [39,63]. Electrodes are required to have continuous conformal contact with the skin of the wearer to allow consistent signal detection and to minimize artifacts and noise, i.e., unwanted signals [60]. When electrodes are directly attached to the skin, they should be biocompatible not to cause any negative impact on the skin of the user, whereas in non-contact electrodes, there is no physical contact to the skin and the electrodes are rather separated from the skin by a dielectric material or air [64]. In a non-contact system, the electrodes should be kept at a fixed distance from the skin for optimal operation. These sensors function by the principle of sensing the electric field created by the displacement currents in the body through the coupling of charges between the patient’s skin and the electrode and are called capacitively coupled electrodes [21,65]. Non-contact electrodes are especially important when contact electrodes damage the skin like in newborns. Most electrodes used are contact electrodes and provide better signal quality. These textile- based electrodes can be developed by integrating yarns or wires to the textile structure or applying conducting compounds onto the textile fabric surface. In the following section, the methods to make textile electrodes for ECG applications have been covered in detail.
Metal Integrated Textile Electrode
Carbon-Coated Textile Electrodes
Conductive Polymer-Coated Textile Electrode
As an alternative to wet electrodes, dry textile electrodes that do not require gel electrolytes are suitable for wearable long-term biosensing to monitor cardiovascular diseases. Textile electrodes could be used in a wide variety of applications and have a larger contact area compared to other dry rigid non-textile electrodes, but when embedded in standard clothes, they often do not provide complete conformal contact with skin. Conductive textiles are created by coating a conductive component on the textile surface or by integrating metal fibers during the manufacturing stage, but because of this, the flexibility of the fabric is negatively impacted, and the fabric is no longer able to fit conformably with the curvilinear surface of the skin. For this reason, textile electrodes are usually integrated inside tight fit garments during the manufacturing stage [66] or patches of textile electrodes are embedded inside elastic bands or tight fit shirts [67] to keep the electrodes in their position and to ensure the proper connection to the skin of the user [68]. However, nonetheless, the electrodes create minimal movement over the skin surface, which causes variation in skin–electrode impedance and negatively affects the signal quality by generating noise interferences [11]. To improve skin–electrode contact, prevent displacement of the electrodes on the skin surface during body motion, and ensure uniform holding pressure, some researchers prepared textile electrodes in a sandwiched structure by sewing pieces of conductive fabric with a foam layer and an outer layer of non-conductive fabric [68,69], or simply sew the conductive fabric to a non-conductive synthetic leather [70].
Moreover, slightly moisturizing the skin or the surface of the textile electrode with a spray of tap water (saline solution) helped to lower skin–electrode contact impedance and as a result, improved signal quality [71,72], which shows the skin moisture (sweat) would also help to improve signal quality. Textile is especially suited for this due to the capillary suction that can retain the water. Weder et al., developed a breast belt with an embroidered textile electrode together with a small water reservoir to keep the skin–electrode interface humid and to obtain good signal quality [73]. However, keeping the skin moist for a long period may cause discomfort to the users. On the other hand, in [23], an ionic liquid gel is used to enhance continuous skin–electrode contact and to improve acquired signals using textile electrodes under dynamic conditions. Figure 9 presents some design examples of wearable textile ECG monitoring systems.
Figure: Different wearable textile ECG monitoring systems: (a) ECG T-shirt with active electrodes and connectors; (b) PEDOT:PSS-coated polyamide electrodes sewn into bras; (c) electrode placement for ECG measurement where plastic clamps were used to fix the electrodes onto the wrist; (d) ECG sensing wristband with printed and flexible electrodes; (e) wearable chest belt with silver-coated nylon woven electrodes and Bluetooth module (f) ECG belt with wetting pad (above) and the embroidered electrodes (below) Research outputs prove that textile electrodes are full of motion artifacts because of an unstable contact of the electrodes on the skin leading to high skin–electrode contact impedance [74-76]. The skin–electrode contact impedance depends on contact pressure, electrode placement, user activity and muscle activity in addition to the main textile electrode impedance [77]. Similarly, currently available wearable health monitoring devices employ cables to connect electrodes to a data processing unit which hinders user activity and leads to discomfort [40]. Due to this, they are not in routine clinical use yet [78]. Designing a wearable ECG monitoring system that guarantees a permanent skin–electrode contact and allows high ECG signal quality, which would be important to develop a true textile wearable system. Additionally, the washability and the dimensional and environmental stability of the electrodes are key issues for long-term use that should be considered [79-85].
Generally, previous research in the area of textile-based electrodes has overcome several problems associated with wearable biopotential monitoring devices, however, the comfort of the user and the ECG signal quality is not at a satisfactory level [59]. It is possible to overcome some of the drawbacks of textile electrodes through optimal design, such as higher contact pressure, moisturizing, increasing electrode size, and others. However, many of these changes lead to other problems, mostly concerning the comfort of the user
The demand for wearable health monitoring electronic textiles is promptly increasing due to their flexibility, lightweight, and washing advantages over standard electrodes. The use of textile-based electrodes to monitor
physiological activities also avoids the use of gel to reduce skin-to-electrode impedance. Therefore, such electrodes would be an ideal replacement for the gel-based wet electrodes and are promising electrodes for wearable applications for long-term monitoring.
Since the introduction of textile-based ECG electrodes in the 1990s, the research in finding better electrodes has drastically increased with much promising improvement in artifact minimization, impedance lowering, SNR minimization, and signal quality improvements. For instance, searching with “ECG + textile” results in 316 Web of Science indexed articles and conference proceedings that have been published in 30 different refereed journals in the last three decades (1990–2020). Moreover, the publication rate is increasing as shown in Figure 10. This shows that many experts are spending their time in the lab looking for improved textile electrodes. This pace of research should eventually result in finding working, washable and textile electrodes for long-term monitoring.
The rapidly increasing demand for e-textiles for physiological monitoring resulted in new conductive materials investigations. New state-of-the-art integration techniques of electronic components in the textile structure could also evolve as a worthy solution in the near future. For instance, the use of 4D printing and investigating 4D conductive materials that are able to change their size and dimension under external controlled stimuli could play a role in lowering skin-to-electrode impedance and improving fit and design concepts.
Smart wearable textiles are the result of interdisciplinary research, which connects concepts and expertise from textile engineering, computer engineering, electronics, material science, medicine, and more [5]. The integration of expertise and the high demand of markets for smart textiles leads to continuous improvements in the technology, supported by growth in research. The development of a reliable textile-based ECG electrode requires a collaboration of experts from textile, material, medical and electrical engineering.
The rise in health care costs and advancements in technology necessitates an emerging trend for personalized health care. Various electrical physiological functions can be observed by means of wearable health care devices. Of the different bio-signals, ECG signals are considered crucial since they offer information regarding the heart condition and cardiovascular diseases which is one of the most prevalent causes of death worldwide. For the early detection and diagnosis of cardiovascular diseases, the continuous and long-term measurement and monitoring of the ECG signal is very important. The commercially used Ag/AgCl gelled electrodes are not suitable for long-term wearable health monitoring systems, due to dehydration of the conductive wet gel over time which causes signal quality deterioration and discomfort for the user, and because they are directly attached to the skin with a connecting wire, often leading to discomfort at the electrode location over time. Dry electrodes are considered a good alternative to those gelled electrodes, especially for long-term use. Dry electrodes made of rigid metals and conductive textile products have been reported by many investigators.
Textile electrodes for ECG monitoring can be developed by integrating metal yarns into the textile or coating with metal nanoparticles, coating with carbon materials, and coating with conductive polymers. As textile clothing is one of the most frequently used materials in our daily life, they are ideal for wearable health monitoring systems. Wearable textile electrodes for continuous health monitoring products need to satisfy requirements such as high conductivity, aesthetics, and comfort, conformal skin–electrode contact, and biocompatibility. Although previous research on the area of textile-based electrodes overcame several problems associated with wearable biopotential monitoring devices, the comfort of the monitored person and ECG signal quality is still not at a satisfactory level.
Mostly, textile electrodes are prone to motion artifacts due to higher contact impedance and the absence of conformal contact, which is why they have not yet achieved acceptance for clinical standard use. The current review showed that there are still a lot of challenges to be resolved for textile electrodes and wearable smart textiles to become more applicable in real-life situations and also become accepted by patients and other users as a reliable, multifunctional, easy-to-use, and minimally obtrusive technology that can increase their quality of life.
Clearly Auctoresonline and particularly Psychology and Mental Health Care Journal is dedicated to improving health care services for individuals and populations. The editorial boards' ability to efficiently recognize and share the global importance of health literacy with a variety of stakeholders. Auctoresonline publishing platform can be used to facilitate of optimal client-based services and should be added to health care professionals' repertoire of evidence-based health care resources.
Journal of Clinical Cardiology and Cardiovascular Intervention The submission and review process was adequate. However I think that the publication total value should have been enlightened in early fases. Thank you for all.
Journal of Women Health Care and Issues By the present mail, I want to say thank to you and tour colleagues for facilitating my published article. Specially thank you for the peer review process, support from the editorial office. I appreciate positively the quality of your journal.
Journal of Clinical Research and Reports I would be very delighted to submit my testimonial regarding the reviewer board and the editorial office. The reviewer board were accurate and helpful regarding any modifications for my manuscript. And the editorial office were very helpful and supportive in contacting and monitoring with any update and offering help. It was my pleasure to contribute with your promising Journal and I am looking forward for more collaboration.
We would like to thank the Journal of Thoracic Disease and Cardiothoracic Surgery because of the services they provided us for our articles. The peer-review process was done in a very excellent time manner, and the opinions of the reviewers helped us to improve our manuscript further. The editorial office had an outstanding correspondence with us and guided us in many ways. During a hard time of the pandemic that is affecting every one of us tremendously, the editorial office helped us make everything easier for publishing scientific work. Hope for a more scientific relationship with your Journal.
The peer-review process which consisted high quality queries on the paper. I did answer six reviewers’ questions and comments before the paper was accepted. The support from the editorial office is excellent.
Journal of Neuroscience and Neurological Surgery. I had the experience of publishing a research article recently. The whole process was simple from submission to publication. The reviewers made specific and valuable recommendations and corrections that improved the quality of my publication. I strongly recommend this Journal.
Dr. Katarzyna Byczkowska My testimonial covering: "The peer review process is quick and effective. The support from the editorial office is very professional and friendly. Quality of the Clinical Cardiology and Cardiovascular Interventions is scientific and publishes ground-breaking research on cardiology that is useful for other professionals in the field.
Thank you most sincerely, with regard to the support you have given in relation to the reviewing process and the processing of my article entitled "Large Cell Neuroendocrine Carcinoma of The Prostate Gland: A Review and Update" for publication in your esteemed Journal, Journal of Cancer Research and Cellular Therapeutics". The editorial team has been very supportive.
Testimony of Journal of Clinical Otorhinolaryngology: work with your Reviews has been a educational and constructive experience. The editorial office were very helpful and supportive. It was a pleasure to contribute to your Journal.
Dr. Bernard Terkimbi Utoo, I am happy to publish my scientific work in Journal of Women Health Care and Issues (JWHCI). The manuscript submission was seamless and peer review process was top notch. I was amazed that 4 reviewers worked on the manuscript which made it a highly technical, standard and excellent quality paper. I appreciate the format and consideration for the APC as well as the speed of publication. It is my pleasure to continue with this scientific relationship with the esteem JWHCI.
This is an acknowledgment for peer reviewers, editorial board of Journal of Clinical Research and Reports. They show a lot of consideration for us as publishers for our research article “Evaluation of the different factors associated with side effects of COVID-19 vaccination on medical students, Mutah university, Al-Karak, Jordan”, in a very professional and easy way. This journal is one of outstanding medical journal.
Dear Hao Jiang, to Journal of Nutrition and Food Processing We greatly appreciate the efficient, professional and rapid processing of our paper by your team. If there is anything else we should do, please do not hesitate to let us know. On behalf of my co-authors, we would like to express our great appreciation to editor and reviewers.
As an author who has recently published in the journal "Brain and Neurological Disorders". I am delighted to provide a testimonial on the peer review process, editorial office support, and the overall quality of the journal. The peer review process at Brain and Neurological Disorders is rigorous and meticulous, ensuring that only high-quality, evidence-based research is published. The reviewers are experts in their fields, and their comments and suggestions were constructive and helped improve the quality of my manuscript. The review process was timely and efficient, with clear communication from the editorial office at each stage. The support from the editorial office was exceptional throughout the entire process. The editorial staff was responsive, professional, and always willing to help. They provided valuable guidance on formatting, structure, and ethical considerations, making the submission process seamless. Moreover, they kept me informed about the status of my manuscript and provided timely updates, which made the process less stressful. The journal Brain and Neurological Disorders is of the highest quality, with a strong focus on publishing cutting-edge research in the field of neurology. The articles published in this journal are well-researched, rigorously peer-reviewed, and written by experts in the field. The journal maintains high standards, ensuring that readers are provided with the most up-to-date and reliable information on brain and neurological disorders. In conclusion, I had a wonderful experience publishing in Brain and Neurological Disorders. The peer review process was thorough, the editorial office provided exceptional support, and the journal's quality is second to none. I would highly recommend this journal to any researcher working in the field of neurology and brain disorders.
Dear Agrippa Hilda, Journal of Neuroscience and Neurological Surgery, Editorial Coordinator, I trust this message finds you well. I want to extend my appreciation for considering my article for publication in your esteemed journal. I am pleased to provide a testimonial regarding the peer review process and the support received from your editorial office. The peer review process for my paper was carried out in a highly professional and thorough manner. The feedback and comments provided by the authors were constructive and very useful in improving the quality of the manuscript. This rigorous assessment process undoubtedly contributes to the high standards maintained by your journal.
International Journal of Clinical Case Reports and Reviews. I strongly recommend to consider submitting your work to this high-quality journal. The support and availability of the Editorial staff is outstanding and the review process was both efficient and rigorous.
Thank you very much for publishing my Research Article titled “Comparing Treatment Outcome Of Allergic Rhinitis Patients After Using Fluticasone Nasal Spray And Nasal Douching" in the Journal of Clinical Otorhinolaryngology. As Medical Professionals we are immensely benefited from study of various informative Articles and Papers published in this high quality Journal. I look forward to enriching my knowledge by regular study of the Journal and contribute my future work in the field of ENT through the Journal for use by the medical fraternity. The support from the Editorial office was excellent and very prompt. I also welcome the comments received from the readers of my Research Article.
Dear Erica Kelsey, Editorial Coordinator of Cancer Research and Cellular Therapeutics Our team is very satisfied with the processing of our paper by your journal. That was fast, efficient, rigorous, but without unnecessary complications. We appreciated the very short time between the submission of the paper and its publication on line on your site.
I am very glad to say that the peer review process is very successful and fast and support from the Editorial Office. Therefore, I would like to continue our scientific relationship for a long time. And I especially thank you for your kindly attention towards my article. Have a good day!
"We recently published an article entitled “Influence of beta-Cyclodextrins upon the Degradation of Carbofuran Derivatives under Alkaline Conditions" in the Journal of “Pesticides and Biofertilizers” to show that the cyclodextrins protect the carbamates increasing their half-life time in the presence of basic conditions This will be very helpful to understand carbofuran behaviour in the analytical, agro-environmental and food areas. We greatly appreciated the interaction with the editor and the editorial team; we were particularly well accompanied during the course of the revision process, since all various steps towards publication were short and without delay".
I would like to express my gratitude towards you process of article review and submission. I found this to be very fair and expedient. Your follow up has been excellent. I have many publications in national and international journal and your process has been one of the best so far. Keep up the great work.
We are grateful for this opportunity to provide a glowing recommendation to the Journal of Psychiatry and Psychotherapy. We found that the editorial team were very supportive, helpful, kept us abreast of timelines and over all very professional in nature. The peer review process was rigorous, efficient and constructive that really enhanced our article submission. The experience with this journal remains one of our best ever and we look forward to providing future submissions in the near future.
I am very pleased to serve as EBM of the journal, I hope many years of my experience in stem cells can help the journal from one way or another. As we know, stem cells hold great potential for regenerative medicine, which are mostly used to promote the repair response of diseased, dysfunctional or injured tissue using stem cells or their derivatives. I think Stem Cell Research and Therapeutics International is a great platform to publish and share the understanding towards the biology and translational or clinical application of stem cells.
I would like to give my testimony in the support I have got by the peer review process and to support the editorial office where they were of asset to support young author like me to be encouraged to publish their work in your respected journal and globalize and share knowledge across the globe. I really give my great gratitude to your journal and the peer review including the editorial office.
I am delighted to publish our manuscript entitled "A Perspective on Cocaine Induced Stroke - Its Mechanisms and Management" in the Journal of Neuroscience and Neurological Surgery. The peer review process, support from the editorial office, and quality of the journal are excellent. The manuscripts published are of high quality and of excellent scientific value. I recommend this journal very much to colleagues.
Dr.Tania Muñoz, My experience as researcher and author of a review article in The Journal Clinical Cardiology and Interventions has been very enriching and stimulating. The editorial team is excellent, performs its work with absolute responsibility and delivery. They are proactive, dynamic and receptive to all proposals. Supporting at all times the vast universe of authors who choose them as an option for publication. The team of review specialists, members of the editorial board, are brilliant professionals, with remarkable performance in medical research and scientific methodology. Together they form a frontline team that consolidates the JCCI as a magnificent option for the publication and review of high-level medical articles and broad collective interest. I am honored to be able to share my review article and open to receive all your comments.
“The peer review process of JPMHC is quick and effective. Authors are benefited by good and professional reviewers with huge experience in the field of psychology and mental health. The support from the editorial office is very professional. People to contact to are friendly and happy to help and assist any query authors might have. Quality of the Journal is scientific and publishes ground-breaking research on mental health that is useful for other professionals in the field”.
Dear editorial department: On behalf of our team, I hereby certify the reliability and superiority of the International Journal of Clinical Case Reports and Reviews in the peer review process, editorial support, and journal quality. Firstly, the peer review process of the International Journal of Clinical Case Reports and Reviews is rigorous, fair, transparent, fast, and of high quality. The editorial department invites experts from relevant fields as anonymous reviewers to review all submitted manuscripts. These experts have rich academic backgrounds and experience, and can accurately evaluate the academic quality, originality, and suitability of manuscripts. The editorial department is committed to ensuring the rigor of the peer review process, while also making every effort to ensure a fast review cycle to meet the needs of authors and the academic community. Secondly, the editorial team of the International Journal of Clinical Case Reports and Reviews is composed of a group of senior scholars and professionals with rich experience and professional knowledge in related fields. The editorial department is committed to assisting authors in improving their manuscripts, ensuring their academic accuracy, clarity, and completeness. Editors actively collaborate with authors, providing useful suggestions and feedback to promote the improvement and development of the manuscript. We believe that the support of the editorial department is one of the key factors in ensuring the quality of the journal. Finally, the International Journal of Clinical Case Reports and Reviews is renowned for its high- quality articles and strict academic standards. The editorial department is committed to publishing innovative and academically valuable research results to promote the development and progress of related fields. The International Journal of Clinical Case Reports and Reviews is reasonably priced and ensures excellent service and quality ratio, allowing authors to obtain high-level academic publishing opportunities in an affordable manner. I hereby solemnly declare that the International Journal of Clinical Case Reports and Reviews has a high level of credibility and superiority in terms of peer review process, editorial support, reasonable fees, and journal quality. Sincerely, Rui Tao.
Clinical Cardiology and Cardiovascular Interventions I testity the covering of the peer review process, support from the editorial office, and quality of the journal.
Clinical Cardiology and Cardiovascular Interventions, we deeply appreciate the interest shown in our work and its publication. It has been a true pleasure to collaborate with you. The peer review process, as well as the support provided by the editorial office, have been exceptional, and the quality of the journal is very high, which was a determining factor in our decision to publish with you.
The peer reviewers process is quick and effective, the supports from editorial office is excellent, the quality of journal is high. I would like to collabroate with Internatioanl journal of Clinical Case Reports and Reviews journal clinically in the future time.
Clinical Cardiology and Cardiovascular Interventions, I would like to express my sincerest gratitude for the trust placed in our team for the publication in your journal. It has been a true pleasure to collaborate with you on this project. I am pleased to inform you that both the peer review process and the attention from the editorial coordination have been excellent. Your team has worked with dedication and professionalism to ensure that your publication meets the highest standards of quality. We are confident that this collaboration will result in mutual success, and we are eager to see the fruits of this shared effort.
Dear Dr. Jessica Magne, Editorial Coordinator 0f Clinical Cardiology and Cardiovascular Interventions, I hope this message finds you well. I want to express my utmost gratitude for your excellent work and for the dedication and speed in the publication process of my article titled "Navigating Innovation: Qualitative Insights on Using Technology for Health Education in Acute Coronary Syndrome Patients." I am very satisfied with the peer review process, the support from the editorial office, and the quality of the journal. I hope we can maintain our scientific relationship in the long term.
Dear Monica Gissare, - Editorial Coordinator of Nutrition and Food Processing. ¨My testimony with you is truly professional, with a positive response regarding the follow-up of the article and its review, you took into account my qualities and the importance of the topic¨.
Dear Dr. Jessica Magne, Editorial Coordinator 0f Clinical Cardiology and Cardiovascular Interventions, The review process for the article “The Handling of Anti-aggregants and Anticoagulants in the Oncologic Heart Patient Submitted to Surgery” was extremely rigorous and detailed. From the initial submission to the final acceptance, the editorial team at the “Journal of Clinical Cardiology and Cardiovascular Interventions” demonstrated a high level of professionalism and dedication. The reviewers provided constructive and detailed feedback, which was essential for improving the quality of our work. Communication was always clear and efficient, ensuring that all our questions were promptly addressed. The quality of the “Journal of Clinical Cardiology and Cardiovascular Interventions” is undeniable. It is a peer-reviewed, open-access publication dedicated exclusively to disseminating high-quality research in the field of clinical cardiology and cardiovascular interventions. The journal's impact factor is currently under evaluation, and it is indexed in reputable databases, which further reinforces its credibility and relevance in the scientific field. I highly recommend this journal to researchers looking for a reputable platform to publish their studies.
Dear Editorial Coordinator of the Journal of Nutrition and Food Processing! "I would like to thank the Journal of Nutrition and Food Processing for including and publishing my article. The peer review process was very quick, movement and precise. The Editorial Board has done an extremely conscientious job with much help, valuable comments and advices. I find the journal very valuable from a professional point of view, thank you very much for allowing me to be part of it and I would like to participate in the future!”
Dealing with The Journal of Neurology and Neurological Surgery was very smooth and comprehensive. The office staff took time to address my needs and the response from editors and the office was prompt and fair. I certainly hope to publish with this journal again.Their professionalism is apparent and more than satisfactory. Susan Weiner