AUCTORES
Chat with usResearch Article | DOI: https://doi.org/10.31579/2639-4162/092
1 Department of Forestry and Wood Technology, Linnaeus University, Lückligs Plats 1, 351 95 Växjö, Sweden. https://orcid.org/0000- 0002-1220-0443
2 Department of Wood and Paper Science and Technology, University of Tehran, Tehran, Iran.
3 Institute of Wood Technology and Technical Sciences, University of Sopron, Sopron, Hungary. https://orcid.org/0000-0003-4378- 7838.
4 Leibniz-IWT – Institute for Materials Testing, Paul-Feller Strasse 1, 28199 Bremen, Germany.
5 Centre for Timber Durability and Design Life, University of the Sunshine Coast, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
6 Ion Sandu, Academy of Romanian Scientists (AOSR), 54 Splaiul Independentei St., Sect. 5, 050094 Bucharest, Romania; and Romanian Inventors Forum, Iasi, 3 Sf. Petru Movila Street, Bloc L11, Sc. A, Et. 3, Ap. 3, 700089 Iasi, Romania. https://orcid.org/0000-0003-4088-8967.
7 Department of Forestry and Wood Technology, Linnaeus University, Lückligs Plats 1, 351 95 Växjö, Sweden; and College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
*Corresponding Author: Reza Hosseinpourpia, Department of Forestry and Wood Technology, Linnaeus University, Lückligs Plats 1, 351 95 Växjö, Sweden; and College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA,
Citation: Amir Ghavidel, Amin Jorbandian, Miklós Bak, Jana Gelbrich, Jeffrey J. Morrell. et all (2023), Degradation Assessment of Archaeological Oak (Quercus spp.) Buried Under Oxygen-Limited Condition. J. General Medicine and Clinical Practice. 6(2); DOI:10.31579/2639-4162/092
Copyright: © 2023 Reza Hosseinpourpia. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Received: 13 March 2023 | Accepted: 30 March 2023 | Published: 14 April 2023
Keywords: archaeological wood; AVS; biological degrada- tion; erosion bacteria; XPS
The biological deterioration of archaeological wood under oxygen-limited conditions varies due to the limited activities of microorganisms. It is essential to expand the knowledge of the degradation types and the status of archaeological monuments for selecting the proper consol- idates. The physical, chemical, and anatomical properties of approximately 600–650year old archaeological oak collected from an archaeological site in Iasi-Romania were analysed to assess the quality and to identify the degradation types. The results were comparedwith similar tests on recently-cut oak. X-ray photoelectron spectroscopy (XPS) revealedthe presence of more lignin-related peaks in the archaeological oak, which likely reflected the degradation of the wood car- bohydrates as evidenced by the decreased oxygen-to-carbon ratio Cox/Cnon-ox. The differences in cellulose crystallinity were not significant suggesting that any cellulose degrada- tion occurred in the amorphous regions. This was also re- flected in the dynamic water vapor sorption analysis where the differences in sorption isotherms and hysteresis of archaeological and recently-cut oaks were marginal. Micro- scopic analysis of the oak cells illustrated bacterial degrada- tion patterns, while the field emission scanning electron microscopy (FESEM) showed the presence of erosion bacteria in the archaeological oak collected from the site with low oxygen conditions.
The use of wood has evolvedover time from a simple,readily available natural material to a modern engineered, smart material with unique attributes (Ghavidel et al. 2021a, 2021b;Walsh-Korb and Avérous 2019). While among the most dura- ble cellulosic materials, wood can be biologically degraded under the properenvironmental conditions. Theseconditions typically involve moisture levels above the fiber saturation point coupled with adequate oxygen and suitable tempera- tures. Fungi and insects are the primary agents of deterio- ration under these conditions, and can rapidlydegrade wood in a variety of environments.
However, there is an entirely differentpathway for deterioration when the wood is buried in wet soils or sub- merged in fresh water for long periods. Oxygen is typically limited under these conditions, excluding most fungi and insects. Bacteria, especially anaerobic bacteria, become the dominant agents of degradation under these conditions. The buried or submerged wood becomes waterlogged, limiting oxygen availability. Degradation proceeds from the outer surface inward, creating a distinct band of heavily degraded and softened wood on the surface surrounding a relatively sound core. This pattern is often observed in oak owing to the combination of density and the presence of extractives (Bjurhager et al. 2012). Wood-degrading bacteria have developed mechanisms for degrading the lignocellulosic matrix, such as resistance to wood preservatives and heartwood extractives as well as the ability to function at extremely low oxygen levels (Gelbrich 2009). Bacteria degradation patterns can easily be distinguished from those produced by fungi because the micromorphological patterns created in the wood cell walls are distinctive and quite different from fungal decay patterns (Feist 1989; Florian 1989; Kránitz et al. 2016). Erosion and tunneling are two unique types of bacterial degradation (Björdal et al. 2000; Gelbrich et al. 2008), with erosion becoming more common in buried archaeological wood (Ghavidel et al. 2021b; Lucejko et al. 2020).
Hemicellulose is the first of the cell wall polymers to be degraded under anaerobic conditions, followed by cellu- lose (Björdal et al. 2000; Ghavidel et al. 2020a, 2022). Lignin is most resistant to bacterial degradation. As a result, the proportion of lignin in archaeological woods is higher than in recently-cut wood (Baar et al. 2020; Gelbrich 2009). The resulting shifts in hemicellulose, cellulose, and lignin ratios affect sorption behavior, mechanical strength, physical and morphological properties (Björdal et al. 2000; Esteban et al. 2009). Moisture sorption behavior of archaeological wood has been inconsistent. Popescu and Hill (2013) found that preferential degradation of wood polysaccharides left large amounts of lignin that were associated with lower moisture sorption in historical Tilia cordata wood compared to recently cut timber of the same species. Archaeological Pinus yunnanensis; however, has higher moisture levels and experiences greater longitudinal shrinkage as compared with the control samples due to the decomposi- tion of the polysaccharides and reduced cellulose crystal- linity (Jingran et al. 2014). Similar results were reported elsewhere (Baar et al. 2020; Esteban et al. 2009; Ghavidel et al. 2020b, 2020c). The archaeological wood samples in these studies were primarily exposed under oxygen-rich conditions that would allow for periodic aerobic degradation.
Degradation mechanisms under oxygen-limited con- ditions still involve cellulose and hemicellulose hydrolysis, but since the majority of microbial lignolytic enzymes require the presence of oxygen, aerobic conditions are essentially the only ones where total lignin degradation may occur, while anaerobic conditions impose slow lignin degradation (Dao et al. 2018; Gelbrich 2009; Unger et al. 2001). However, it should be noted that some lignin degradation can occur under low oxygen conditions. For example, moderately decayed archaeological Hopea and Tectona from the Xiaobaijiao shipwreck had higher moisture contents in comparison with less decayed samples due to the lower amounts of cellulose and hemi- cellulose and the proportionally higher amounts of lignin (Han et al. 2020). Esteban et al. (2009) reported higher moisture sorption and hysteresis coefficients in 1170 (±40) BP year old juvenile Pinus sylvestris L. wood from a site in San Martin de la Vega del Alberche, in Avila (Spain) under low oxygen conditions. Ghavidel et al. (2020a) found decreased cellulose crystallinity due to bacterial degradation of elm and poplar archaeological wood samples.
Characterising the degradation patterns in archaeo- logical timbers can have important implications for developing effective conservation and restoration strate- gies. Rising interest in preserving evidence of ancient cultures has resulted in an increasing number of excava- tions as well as the recovery of artifacts in various stages of degradation. For example, ∼600 to 650 year-old oak (Quercus spp) timbers were recently discovered in Isai City, Romania. The timbers had been exposed under low oxygen conditions and contained evidence of biological degradation. Understanding the degree of decomposition in relation to the residual chemical and physical properties is an important aspect of identifying effective restoration strategies. The primary objective of this study was to characterise the properties of these archaeological timbers as part of the restoration process.
2.1 Sample preparation
The archaeological oak samples were 1 m long beams presumed to be from a fence from an 14th-century archaeological site called Olita Mate located on Armenia Street in Iasi city, Romania. The archaeological oak wood beams were used for paving and arranged vertically embedded in the clay soil of the central street and covered with macadam paving (cubic stone with dimensions of approx. 150 × 150 × 150 mm) of granite and diorite. The stone pavement was eventually destroyed, and the archaeological oak beam samples were buried to a depth of approxi- mately 2 m. 250 archaeological beams were extracted on site and 6 of them were brought to the ARHEOINVEST laboratory (Iasi, Romania) for dendrochronological analysis and degradation assessment. Despite the sample age, the wood structure was intact but darkly discoloured by the presence of iron that had reacted with the tannins to form iron tannate (Figure 1), as described previously (Ghavidel et al. 2020d).
Figure 1: Recently-cut (A) and archaeological oak (B).
2.2 X-ray photoelectron spectroscopy (XPS)
Chemical compositions of wood samples were examined at room tem- perature using a concentric hemispherical electron energy analyser(CHA) (Specs model EA10 plus, Bestec Co, Berlin, Germany)with an Al-Kα radiation source,a photonic energyof 1486.6 eV, and a base pressureof 2 μPa, as described previously (Ghavidel et al. 2020a, 2020b). Three samples were selected randomly from different parts of archaeological and recently-cut samples,two measurements were performed per sample, and the average value was reported (n = 6).
2.3 X-ray diffraction analysis (XRD)
The crystalline structureof the samples was measuredon wood ground to pass a 10 µm mesh screen (P7 premium, Fritsch) on a PhilipsX’Pert MPD PW 3040 X-ray diffractometer (Netherlands) equipped with a PW 3050/10 goniometer, divergence slit 0.5°, anti- scatter slit 0.5°, receiving slit 0.6 mm, secondary graphite mono- chromator, mask 15 mm, 40 kV activity and 30 mA with Cu Kα radi- ation. Analysiswas carried out in a continuous mode using the scanning range of 5–50°2θ with a phase width of 0.02°2θ as previously described (Ghavidel et al. 2020a, 2020b). The sample rotating speed was 1 rpm, and each move took 4 s to count. The crystallinity index (CrI) and crystallite size were determined according to Equations (1) and (2) (Ghavidel et al. 2020b):
where Iam is the minimum intensity peaks at 2 = 16.14°, assigned to the amorphous phase, and I200 is the intensity of the crystalline peak at 2θ = 22.5°, allocated to both crystalline and amorphous parts.
where K is a constant with the value of 0.94, λ is the X-ray wavelength, β is the full width at half maximum of the diffraction band and θ is the Bragg angle corresponding to the (200) plane.
where K is a constant with the value of 0.94, λ is the X-ray wavelength, β is the full width at half maximum of the diffraction band and θ is the Bragg angle corresponding to the (200) plane.
2.4 Water sorption analysis
Water vapour sorption behavior of ground wood samples (passed through a 20 mesh sieve) was investigated using a Q5000 SA automated vapor sorption (AVS) analysis apparatus (Q5000 SA, TA Instruments) at a constant temperature of 25 °C (Ghavidel et al. 2020a; Hosseinpourpia et al. 2018, 2019, 2020). Sorption isotherm was measured from 0 to 95% relative humidity (RH) and then reversed to 0 percent RH with dm/dt criteria of less than 0.005% per 10 min. The weight at equilibrium was measured using a micro-balance at each RH, and the equilibrium moisture content (EMC) was calculated accordingly.
2.5 Microscopic analyses
The degree of damage was assessed using both light and scanning electron microscopy. Three samples from different parts of archaeo- logical oak were selected and thin sectioned for light microscopy from the transverse and longitudinal faces of the water-soaked archaeolog- ical wood. The transverse sections were stained with 1% (w/v) safranin O in ethanol while the longitudinal sections were stained with 0.1% (w/v) aniline blue (Ghavidel et al. 2021b, 2020c). Samples were imaged with a Zeiss Axioscope equipped with AxioCam and Axio vision software (Carl Zeiss MicroImaging GmbH, Germany). The archaeological oak samples were still relatively sound and could be hand-sectioned for staining and analysis, while a large number of sections were prepared to carefully study the degradation patterns.
Recently-cut and archaeological samples were further examined using a Hitachi S-3400 N (Tokyo, Japan) scanning electron microscope operated at an 8 kV accelerating voltage. Samples (5 mm cubes) were surfaced with a razor blade to create a smooth surface and mounted on aluminium stubs. The surfaces were examined directly without sputter coating (Ghavidel et al. 2020d, 2022). A TSCAN (Brno, Cheque Republic) FESEM was used where the higher resolution was required following a similar sample preparation method.
3.1 Chemical structure and crystallinity of archaeological oak
X-ray photoelectron spectroscopy (XPS) analysis of the recently-cut and archaeological oak samples produced C1s energy level spectra with four sub-peaks, e.g., C1, C2, C3, and C4, and O1s energy level spectra with two sub-peaks of O1 and O2 (Figure 2).
The C1 signal (Figure 2A, B) which mainly represents the presence of extractives and lignin increased substantially in the archaeological oak with a simultaneous decrease in the concentration of oxygenated C atoms. Increasing proportions of lignin reflect the tendency for the hollocellulose compo- nents to be degraded in archaeological samples, leaving a lignin-rich residual (Capano et al. 2015; Christiernin et al. 2009). The C2 sub-peak which represent cellulose and hemi- cellulose was slightly lower in the archaeological oak, while the C3 and C4 sub-peaks were not markedly changed. These changes reflect the loss of low molecular weight components including extractives, hemicelluloses, and even a small portion of amorphous cellulose, which typically occurs during the first 150 years of ageing (Ghavidel et al. 2020a, 2020b; Popescu et al. 2009).
Figure 2: High–resolution spectra of the C1s and O1s energy levels of recently-cut (A, C) and archaeological samples(B, D) of oak.
The higher resistance of oak to microbial attack might help explain the lower losses of these wood compo- nents. Popescu et al. (2009) reported a significant decrease in the C1 sub-peak and an increasing C2 sub-peak in archaeo- logical lime wood as the result of an increase in C-O groups caused by oxidation and hydrolysis reactions that occurred during the ageing process. The results in the present work, however, suggest that neither oxidation nor hydrolysis occurred in the archaeological oak (Table 1). For the oxida- tion of lignin, oxygen is required, and the low access to oxygen in the archaeological site largely limited that process. Additionally, oxidation and hydrolysis are mutually reliant and catalyse one another. The β-glycosidic link of carbohy- drates is more vulnerable to hydrolysis processes than oxidation (Łojewska et al. 2005). The oxygen/carbon ratio and Cox/Cunox were much lower in the archaeological sample (Table 1) which could be attributed to bacterial degradation of the carbohydrates. Thus, hydrolysis may be unlikely to occur in the archaeological oak sample. The C1 sub-peak corresponding to lignin and extractives in wood was also higher in archaeological oak, supporting the premise that carbohydrates in this fraction have been preferentially degraded in archaeological oak. The decreased Cox/Cunox also suggests an increase in C–C bonds, which tend to be more closely associated with lignin.
The O1 and O2 sub-peaks (Figure 2C, D) are related to the oxygen atoms that are linked with double and single bonds to carbon atoms, respectively
(Popescu et al. 2009). The O2 sub-peak of the archaeological oak decreased, potentially as a result of hemicellulose degradation (Hedges 1989; Nzokou and Pascal Kamdem 2005; Popescu et al. 2009). Hemicellulose is considered to be the most susceptible of the three poly- mers to microbial degradation and can be degraded by bacteria in the absence of oxygen, while lignin degradation is oxidative and requires the presence of some oxygen (Björdal et al. 2000; Goodell et al. 2020). Oxygen is generally limited in buried substrates. These results are consistent with anaerobic bacterial degradation.
The crystalline structure and degree of crystallinity of recently-cut and archaeological oak wood samples are shown in Figure 3 and Table 2. I200 and Iam represent the maximum and minimum intensities of the crystalline cellulose, respectively. The crystalline index is shown by CrI and the crystalline size of the cellulose is represented by L. There were small differences in the crystallinity of cellulose be- tween recently-cut and archaeological oak that may reflect the leaching of extractives from the archaeological mate- rials. A small reduction in the crystalline size of the archaeological wood could be related to moisture absorp- tion, chemical reactivity, or swelling (Lionetto et al. 2012). Although, it is known that the degradation of hemicellulose and amorphous cellulose increases the crystallinity index, the total crystallinity percentage may decrease when avail- able degraded carbohydrates are consumed by degrading agents (Howell et al. 2009).
Figure 3: X-ray diffractograms from archaeological and recently-cut oak.
Wood samples | C1 (atm.%) | C2 (atm.%) | C3 (atm.%) | C4 (atm.%) | Atomic ratioO/C | Cox/Cunox |
Recently-cut oak | 33.4(±0.8) | 55.21(±1.1) | 7.2 (±0.9) | 5.2 (±1.1) | 0.44 | 2.02 |
Archaeological oak | 46.7 (±3.07) | 42.8 (±2.5) | 6.5 (±0.8) | 4.1 (±0.8) | 0.32 | 1.14 |
Table 1: Relative surface composition for recently-cut and archaeological oak.
Wood samples | I200 | Iam | CrI (%) | L (200) (nm) |
Recently-cut oak | 22.10 | 18.18 | 50.28 | 8.78 |
Archaeological oak | 21.94 | 17.98 | 44.72 | 8.19 |
Table 2: Band positions of crystalline and amorphous cellulose and the calculated parameters for the wood samples.
Degradation patterns differ by deterioration agent with white rot fungi tending to erode cell walls, brown rot fungi producing a general attack that can be difficult to detect microscopically, and soft rot fungi producing either erosion of the cell wall or diamond-shaped cavities within the S2 cell wall layer. Bacterial decay can be characterised as either erosion of the wood cell wall from the lumen outward or tunnelling within the cell wall. Bacterial decay in anoxic environments tends to start on the surface and slowly extend inwards (Björdal et al. 2000; Pedersen et al. 2021; Singh et al. 2022), degrading the wood polymers and influencing the crystalline structure of wood.
3.2 Moisture sorption of archaeological oak
Moisture sorption reflects the availability of hydroxyls on the hemicellulose and amorphous cellulose fractions of the wood and would be expected to decline as bacteria degrade this fraction (Han et al. 2020). The isotherm curves of recently cut and archaeological oak samples illustrated the typical type II sigmoid character of cellulosic materials (Figure 4). The ageing process altered the sorption behaviour of archaeological wood samples through the whole adsorp- tion and desorption runs especially at higher relative humidities (RHs), e.g., over 80%. The archaeological oak wood reached slightly higher equilibrium moisture content (EMC) values during the sorption and desorption processes across the entire hygroscopic range. This might be attributed to the slightly lower crystallinity in the archaeological oak samples in comparison with the recently-cut one, as
indicated by the XRD analysis. Figure 4B demonstrates the sorption hysteresis of oak samples. As with the sorption isotherms, the hysteresis values were similar for both sample types. These results differ from the higher EMC values found during adsorption/desorption processes with elm and poplar samples exposed for prolonged periods under low oxygen conditions (Ghavidel et al. 2020a). The differences in hysteresis may reflect variations in volumetric swelling as a result of kinetic retardation during shrinkage/ swelling (Hosseinpourpia et al. 2016). The slightly higher values in sorption hysteresis of the archaeological oak might be related to reduced flexibility of wood cells and/or fewer hydroxyl groups, as a result of the degradation and ageing processes. Degradation of amorphous cellulose and hemicel- lulose over time might also result in a more stable and lower degradation rate of crystalline cellulose levels (Howell et al. 2009). Moreover, the degradation of hemicellulose in archaeological wood reduces the length of the crystal regions, which may result in the appearance of new absorption sites (Guo et al. 2018), and, consequently, increment of equilib- rium moisture content.
3.3 Morphology of the degraded wood
The optical microscopy images were shown in Figure 5A–C. Light microscopic examination of transverse -sections of degraded cells indicated that decay started in the lumen and progressed outwards until it reached the middle lamella
Figure 4: Adsorption and desorption isotherms (A) and sorption hysteresis (B) of recently-cut and archaeological oak at changing RH levels.
Figure 5: Light microscopic images of transverse sections of archaeological oak (A, B) showing cell wall erosion (arrows) and a tangential section using polarised light showing cell wall damage (C).
Where the damage stopped. Lignin levels are typically highest in the primary cell wall and middle lamella, but this region is not directly affected by the bacterial attack. Lignin is present at proportionally lower levels in the secondary cell walls, but its presence appears to reduce cellulose degra- dation. In addition, lignin creates a physical barrier that affects and reduces the biological degradation of cellulose (Singh et al. 2022). This pattern again supports the premise that bacterial decay largely affected the carbohydrates such as cellulose and hemicellulose, leaving a lignin-rich fraction. This attack pattern is consistent with an attack by erosion bacteria (EB) as previously described (Cha et al. 2021; Nilsson and Björdal 2008; Singh et al. 2022). A similar pattern was also observed in the longitudinal sections as the character- istic fine ducts could be found in the longitudinal section (Figure 5C, arrows). No fungal hyphae were detected in the transverse or tangential sections.
The scanning electron (SEM) micrographs of archaeo- logical oak showed no evidence of extensive damage to the rays, vessels, or fibers (Figure 6). Even the tyloses were intact in the vessels (yellow arrow in Figure 6C). Since the archae- ological oak was underground for over 600 years, there was evidence of soil infusion into the wood cells, especially in the parenchyma, which is consistent with prolonged timber burial (Huisman et al. 2008; Smith and Lillie 2007). No evi- dence of fungal activity was found in SEM images. Partial cell wall degradation was infrequent, suggesting that bacterial degradation was still at a relatively early stage (green arrow in Figure 6B). The absence of fungal hyphae does not completely eliminate them as possible degradation agents but the absence of any hyphae suggests that they were not pri- mary agents under these conditions.
The rod-shaped erosion bacteria were observed using field emission SEM (FESEM) (Figure 6E, F). These bacteria often had pointed ends and were 102 µm long, which was consistent with previous reports (Daniel 2014). Nilsson and Björdal (2008) found that erosion bacteria required special conditions for isolation and were only active under limited- oxygen conditions. The degradation patterns of EB are comparable to the soft-rot, where the bacteria align with the underlying cellulose microfibrils in the cellulose-rich S2 cell wall layer. The location of EB in this cell wall zone may help explain how they primarily degrade cellulose (Daniel 2014; Nilsson and Björdal 2008; Singh et al. 2022).
Figure 6: Scanning electron (SEM) micrographs of transverse (A, B), and tangential sections (C, D) of archaeological oak showing bacteria, cell wall erosion, and collapsed ray cells (Arrows). Field emission scanningelectron microscograph (FESEM)(E, F) of archaeological oak wood showingerosion bacteria (orange arrows)on the wood cell wall.
Understanding the wood degradation state and mechanism is important for predicting the durability of structures and protecting existing monuments. The archaeological oak collected in this study from oxygen-limited conditions illus- trated that its chemical composition, crystalline structure, and sorption behavior were very similar to those of recently- cut samples. Although the archaeological and recently-cut wood samples were nearly identical in the macro-observations, micro-structural analyses through optical and electron microscopy revealed that the degradation in the archaeo- logical wood mainly occurred by erosion bacteria, which are active under oxygen-limited conditions. This study increased our knowledge of the importance of quality assessment in archaeological monuments, where decisions must be made to select proper protection and preservation methods for extending the lifespan of wooden buildings.
Author contributions:AG, RH and IS designed the research project; AG, MB, AJ, JG and JM mainly conducted experiments and wrote the manuscript; RH and IS supervised the work. All authors contributed to and approved the final version of the manuscript.
Research funding:None declared.
Conflict of interest statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Data availability:Data will be made available on request
Clearly Auctoresonline and particularly Psychology and Mental Health Care Journal is dedicated to improving health care services for individuals and populations. The editorial boards' ability to efficiently recognize and share the global importance of health literacy with a variety of stakeholders. Auctoresonline publishing platform can be used to facilitate of optimal client-based services and should be added to health care professionals' repertoire of evidence-based health care resources.
Journal of Clinical Cardiology and Cardiovascular Intervention The submission and review process was adequate. However I think that the publication total value should have been enlightened in early fases. Thank you for all.
Journal of Women Health Care and Issues By the present mail, I want to say thank to you and tour colleagues for facilitating my published article. Specially thank you for the peer review process, support from the editorial office. I appreciate positively the quality of your journal.
Journal of Clinical Research and Reports I would be very delighted to submit my testimonial regarding the reviewer board and the editorial office. The reviewer board were accurate and helpful regarding any modifications for my manuscript. And the editorial office were very helpful and supportive in contacting and monitoring with any update and offering help. It was my pleasure to contribute with your promising Journal and I am looking forward for more collaboration.
We would like to thank the Journal of Thoracic Disease and Cardiothoracic Surgery because of the services they provided us for our articles. The peer-review process was done in a very excellent time manner, and the opinions of the reviewers helped us to improve our manuscript further. The editorial office had an outstanding correspondence with us and guided us in many ways. During a hard time of the pandemic that is affecting every one of us tremendously, the editorial office helped us make everything easier for publishing scientific work. Hope for a more scientific relationship with your Journal.
The peer-review process which consisted high quality queries on the paper. I did answer six reviewers’ questions and comments before the paper was accepted. The support from the editorial office is excellent.
Journal of Neuroscience and Neurological Surgery. I had the experience of publishing a research article recently. The whole process was simple from submission to publication. The reviewers made specific and valuable recommendations and corrections that improved the quality of my publication. I strongly recommend this Journal.
Dr. Katarzyna Byczkowska My testimonial covering: "The peer review process is quick and effective. The support from the editorial office is very professional and friendly. Quality of the Clinical Cardiology and Cardiovascular Interventions is scientific and publishes ground-breaking research on cardiology that is useful for other professionals in the field.
Thank you most sincerely, with regard to the support you have given in relation to the reviewing process and the processing of my article entitled "Large Cell Neuroendocrine Carcinoma of The Prostate Gland: A Review and Update" for publication in your esteemed Journal, Journal of Cancer Research and Cellular Therapeutics". The editorial team has been very supportive.
Testimony of Journal of Clinical Otorhinolaryngology: work with your Reviews has been a educational and constructive experience. The editorial office were very helpful and supportive. It was a pleasure to contribute to your Journal.
Dr. Bernard Terkimbi Utoo, I am happy to publish my scientific work in Journal of Women Health Care and Issues (JWHCI). The manuscript submission was seamless and peer review process was top notch. I was amazed that 4 reviewers worked on the manuscript which made it a highly technical, standard and excellent quality paper. I appreciate the format and consideration for the APC as well as the speed of publication. It is my pleasure to continue with this scientific relationship with the esteem JWHCI.
This is an acknowledgment for peer reviewers, editorial board of Journal of Clinical Research and Reports. They show a lot of consideration for us as publishers for our research article “Evaluation of the different factors associated with side effects of COVID-19 vaccination on medical students, Mutah university, Al-Karak, Jordan”, in a very professional and easy way. This journal is one of outstanding medical journal.
Dear Hao Jiang, to Journal of Nutrition and Food Processing We greatly appreciate the efficient, professional and rapid processing of our paper by your team. If there is anything else we should do, please do not hesitate to let us know. On behalf of my co-authors, we would like to express our great appreciation to editor and reviewers.
As an author who has recently published in the journal "Brain and Neurological Disorders". I am delighted to provide a testimonial on the peer review process, editorial office support, and the overall quality of the journal. The peer review process at Brain and Neurological Disorders is rigorous and meticulous, ensuring that only high-quality, evidence-based research is published. The reviewers are experts in their fields, and their comments and suggestions were constructive and helped improve the quality of my manuscript. The review process was timely and efficient, with clear communication from the editorial office at each stage. The support from the editorial office was exceptional throughout the entire process. The editorial staff was responsive, professional, and always willing to help. They provided valuable guidance on formatting, structure, and ethical considerations, making the submission process seamless. Moreover, they kept me informed about the status of my manuscript and provided timely updates, which made the process less stressful. The journal Brain and Neurological Disorders is of the highest quality, with a strong focus on publishing cutting-edge research in the field of neurology. The articles published in this journal are well-researched, rigorously peer-reviewed, and written by experts in the field. The journal maintains high standards, ensuring that readers are provided with the most up-to-date and reliable information on brain and neurological disorders. In conclusion, I had a wonderful experience publishing in Brain and Neurological Disorders. The peer review process was thorough, the editorial office provided exceptional support, and the journal's quality is second to none. I would highly recommend this journal to any researcher working in the field of neurology and brain disorders.
Dear Agrippa Hilda, Journal of Neuroscience and Neurological Surgery, Editorial Coordinator, I trust this message finds you well. I want to extend my appreciation for considering my article for publication in your esteemed journal. I am pleased to provide a testimonial regarding the peer review process and the support received from your editorial office. The peer review process for my paper was carried out in a highly professional and thorough manner. The feedback and comments provided by the authors were constructive and very useful in improving the quality of the manuscript. This rigorous assessment process undoubtedly contributes to the high standards maintained by your journal.
International Journal of Clinical Case Reports and Reviews. I strongly recommend to consider submitting your work to this high-quality journal. The support and availability of the Editorial staff is outstanding and the review process was both efficient and rigorous.
Thank you very much for publishing my Research Article titled “Comparing Treatment Outcome Of Allergic Rhinitis Patients After Using Fluticasone Nasal Spray And Nasal Douching" in the Journal of Clinical Otorhinolaryngology. As Medical Professionals we are immensely benefited from study of various informative Articles and Papers published in this high quality Journal. I look forward to enriching my knowledge by regular study of the Journal and contribute my future work in the field of ENT through the Journal for use by the medical fraternity. The support from the Editorial office was excellent and very prompt. I also welcome the comments received from the readers of my Research Article.
Dear Erica Kelsey, Editorial Coordinator of Cancer Research and Cellular Therapeutics Our team is very satisfied with the processing of our paper by your journal. That was fast, efficient, rigorous, but without unnecessary complications. We appreciated the very short time between the submission of the paper and its publication on line on your site.
I am very glad to say that the peer review process is very successful and fast and support from the Editorial Office. Therefore, I would like to continue our scientific relationship for a long time. And I especially thank you for your kindly attention towards my article. Have a good day!
"We recently published an article entitled “Influence of beta-Cyclodextrins upon the Degradation of Carbofuran Derivatives under Alkaline Conditions" in the Journal of “Pesticides and Biofertilizers” to show that the cyclodextrins protect the carbamates increasing their half-life time in the presence of basic conditions This will be very helpful to understand carbofuran behaviour in the analytical, agro-environmental and food areas. We greatly appreciated the interaction with the editor and the editorial team; we were particularly well accompanied during the course of the revision process, since all various steps towards publication were short and without delay".
I would like to express my gratitude towards you process of article review and submission. I found this to be very fair and expedient. Your follow up has been excellent. I have many publications in national and international journal and your process has been one of the best so far. Keep up the great work.
We are grateful for this opportunity to provide a glowing recommendation to the Journal of Psychiatry and Psychotherapy. We found that the editorial team were very supportive, helpful, kept us abreast of timelines and over all very professional in nature. The peer review process was rigorous, efficient and constructive that really enhanced our article submission. The experience with this journal remains one of our best ever and we look forward to providing future submissions in the near future.
I am very pleased to serve as EBM of the journal, I hope many years of my experience in stem cells can help the journal from one way or another. As we know, stem cells hold great potential for regenerative medicine, which are mostly used to promote the repair response of diseased, dysfunctional or injured tissue using stem cells or their derivatives. I think Stem Cell Research and Therapeutics International is a great platform to publish and share the understanding towards the biology and translational or clinical application of stem cells.
I would like to give my testimony in the support I have got by the peer review process and to support the editorial office where they were of asset to support young author like me to be encouraged to publish their work in your respected journal and globalize and share knowledge across the globe. I really give my great gratitude to your journal and the peer review including the editorial office.
I am delighted to publish our manuscript entitled "A Perspective on Cocaine Induced Stroke - Its Mechanisms and Management" in the Journal of Neuroscience and Neurological Surgery. The peer review process, support from the editorial office, and quality of the journal are excellent. The manuscripts published are of high quality and of excellent scientific value. I recommend this journal very much to colleagues.
Dr.Tania Muñoz, My experience as researcher and author of a review article in The Journal Clinical Cardiology and Interventions has been very enriching and stimulating. The editorial team is excellent, performs its work with absolute responsibility and delivery. They are proactive, dynamic and receptive to all proposals. Supporting at all times the vast universe of authors who choose them as an option for publication. The team of review specialists, members of the editorial board, are brilliant professionals, with remarkable performance in medical research and scientific methodology. Together they form a frontline team that consolidates the JCCI as a magnificent option for the publication and review of high-level medical articles and broad collective interest. I am honored to be able to share my review article and open to receive all your comments.
“The peer review process of JPMHC is quick and effective. Authors are benefited by good and professional reviewers with huge experience in the field of psychology and mental health. The support from the editorial office is very professional. People to contact to are friendly and happy to help and assist any query authors might have. Quality of the Journal is scientific and publishes ground-breaking research on mental health that is useful for other professionals in the field”.
Dear editorial department: On behalf of our team, I hereby certify the reliability and superiority of the International Journal of Clinical Case Reports and Reviews in the peer review process, editorial support, and journal quality. Firstly, the peer review process of the International Journal of Clinical Case Reports and Reviews is rigorous, fair, transparent, fast, and of high quality. The editorial department invites experts from relevant fields as anonymous reviewers to review all submitted manuscripts. These experts have rich academic backgrounds and experience, and can accurately evaluate the academic quality, originality, and suitability of manuscripts. The editorial department is committed to ensuring the rigor of the peer review process, while also making every effort to ensure a fast review cycle to meet the needs of authors and the academic community. Secondly, the editorial team of the International Journal of Clinical Case Reports and Reviews is composed of a group of senior scholars and professionals with rich experience and professional knowledge in related fields. The editorial department is committed to assisting authors in improving their manuscripts, ensuring their academic accuracy, clarity, and completeness. Editors actively collaborate with authors, providing useful suggestions and feedback to promote the improvement and development of the manuscript. We believe that the support of the editorial department is one of the key factors in ensuring the quality of the journal. Finally, the International Journal of Clinical Case Reports and Reviews is renowned for its high- quality articles and strict academic standards. The editorial department is committed to publishing innovative and academically valuable research results to promote the development and progress of related fields. The International Journal of Clinical Case Reports and Reviews is reasonably priced and ensures excellent service and quality ratio, allowing authors to obtain high-level academic publishing opportunities in an affordable manner. I hereby solemnly declare that the International Journal of Clinical Case Reports and Reviews has a high level of credibility and superiority in terms of peer review process, editorial support, reasonable fees, and journal quality. Sincerely, Rui Tao.
Clinical Cardiology and Cardiovascular Interventions I testity the covering of the peer review process, support from the editorial office, and quality of the journal.
Clinical Cardiology and Cardiovascular Interventions, we deeply appreciate the interest shown in our work and its publication. It has been a true pleasure to collaborate with you. The peer review process, as well as the support provided by the editorial office, have been exceptional, and the quality of the journal is very high, which was a determining factor in our decision to publish with you.
The peer reviewers process is quick and effective, the supports from editorial office is excellent, the quality of journal is high. I would like to collabroate with Internatioanl journal of Clinical Case Reports and Reviews journal clinically in the future time.
Clinical Cardiology and Cardiovascular Interventions, I would like to express my sincerest gratitude for the trust placed in our team for the publication in your journal. It has been a true pleasure to collaborate with you on this project. I am pleased to inform you that both the peer review process and the attention from the editorial coordination have been excellent. Your team has worked with dedication and professionalism to ensure that your publication meets the highest standards of quality. We are confident that this collaboration will result in mutual success, and we are eager to see the fruits of this shared effort.
Dear Dr. Jessica Magne, Editorial Coordinator 0f Clinical Cardiology and Cardiovascular Interventions, I hope this message finds you well. I want to express my utmost gratitude for your excellent work and for the dedication and speed in the publication process of my article titled "Navigating Innovation: Qualitative Insights on Using Technology for Health Education in Acute Coronary Syndrome Patients." I am very satisfied with the peer review process, the support from the editorial office, and the quality of the journal. I hope we can maintain our scientific relationship in the long term.
Dear Monica Gissare, - Editorial Coordinator of Nutrition and Food Processing. ¨My testimony with you is truly professional, with a positive response regarding the follow-up of the article and its review, you took into account my qualities and the importance of the topic¨.
Dear Dr. Jessica Magne, Editorial Coordinator 0f Clinical Cardiology and Cardiovascular Interventions, The review process for the article “The Handling of Anti-aggregants and Anticoagulants in the Oncologic Heart Patient Submitted to Surgery” was extremely rigorous and detailed. From the initial submission to the final acceptance, the editorial team at the “Journal of Clinical Cardiology and Cardiovascular Interventions” demonstrated a high level of professionalism and dedication. The reviewers provided constructive and detailed feedback, which was essential for improving the quality of our work. Communication was always clear and efficient, ensuring that all our questions were promptly addressed. The quality of the “Journal of Clinical Cardiology and Cardiovascular Interventions” is undeniable. It is a peer-reviewed, open-access publication dedicated exclusively to disseminating high-quality research in the field of clinical cardiology and cardiovascular interventions. The journal's impact factor is currently under evaluation, and it is indexed in reputable databases, which further reinforces its credibility and relevance in the scientific field. I highly recommend this journal to researchers looking for a reputable platform to publish their studies.
Dear Editorial Coordinator of the Journal of Nutrition and Food Processing! "I would like to thank the Journal of Nutrition and Food Processing for including and publishing my article. The peer review process was very quick, movement and precise. The Editorial Board has done an extremely conscientious job with much help, valuable comments and advices. I find the journal very valuable from a professional point of view, thank you very much for allowing me to be part of it and I would like to participate in the future!”
Dealing with The Journal of Neurology and Neurological Surgery was very smooth and comprehensive. The office staff took time to address my needs and the response from editors and the office was prompt and fair. I certainly hope to publish with this journal again.Their professionalism is apparent and more than satisfactory. Susan Weiner