AUCTORES
Globalize your Research
Research Article | DOI: https://doi.org/
*Corresponding Author:
Citation:
Copyright: © rner. This is an open-access article distributed under the terms of The Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credite
Received: 30 November -0001 | Accepted: 02 February 2019 | Published: 05 February 2019
Keywords: Observational facts; Absence of frightening sea level rise; Truths from corals, trees and vegetation; Rotational eustasy
Biological criteria and shore morphology do not lie. Therefore, they are key elements for a proper reconstruction of sea level changes during the last 500 years. The elements have to be observed, understood, documented and dated. Having done so in the Maldives, Bangladesh, Goa (India), Fiji and New Caledonia, a new picture emerged. Sea level is not at all in a rapidly rising mode in the equatorial region, rather it is in opposed phase with the well-known climate changes of the Northern Hemisphere. The main driving force is changes in Earth’s rate of rotation as a function of planetary-solar interaction with the Earth’s systems.
On the 26 of September last year, it was exactly 30 year since we could read in the Australian magazine Canberra Times that all the 1196 atoll islands of the Maldives would be submerged in 30 years. With time, the truth was revealed: not a single island has been submerged and sea is not in a rapidly rising mode as claimed by the IPCC (e.g. 2013) and its proponents.
In year 2000, we launched an international research project: The Maldives International Sea Level Project (Mörner, 2004a, 2007a, 2011, 2017a; Mörner et al., 2004). With respect to detailed shore morphological studies it was soon obvious that sea level was not at all in a rapidly rising mode; falling in the 1970s and remaining virtually stable for the last 40 years.
The whole idea of a presently rapidly sea level threatening to submerge low-lying coastal areas and island was revealed to be “the Greatest Lie Ever Told” (Mörner, 2007b).
This called for verification in other parts of the oceans. Special field studies were therefore conducted in Bangladesh (Mörner, 2010a), Qatar (2015a), Goa in southwest India (Mörner, 2017b), the Fiji Islands (Mörner, 2017c; Mörner and Matlack-Klein, 2017a) and Ouvéa Island in New Caledonia (Mörner, 2018a). Also, other sites were included (e.g. Mörner, 2016). A summary of the field observational data has been presented in Mörner (2019, Supplementary Material). In this paper, I will focus on a few relevant observational facts in biology and morphology, noting that trees and corals do not lie, nor do morphological structures – but they all have to be observed, understood, documented and dated.
Our investigation included the submarine shorelines from the postglacial sea level rise (Rufin-Soler et al., 2014), the last 5000 years (Mörner, 2007a) and the last 500 years (Mörner, 2011, 2016, 2019). In this paper I will discuss the last 500 years’ records and show a few relevant examples.
There was a skeleton of a woman – “the Reef Woman” of the Maldives – found in the reef of Lhosfushi (Mörner, 2017a). She was lying on an old beach of the same level as today’s beach. Her feet were cut off indicating a murder. The bones were dated at AD 1150, which is the time of the Muslim takeover of the Maldives. The first message is that sea level was at the same position 850 years ago as it is today. Hence, there is nothing special with present day sea level changes. The second message (from the related shore morphology and stratigraphy) is that skeleton was covered by a 60 cm sea level rise in the 13th century, and then by a sequence of sea level oscillations: a +60 cm level in the 17th century, a low level in the 18th century, a +20 cm high in the 19th and 20th centuries, a drop in sea level of about 20 cm at around 1970 and virtually stable sea level conditions in the last 40 years.
Already at our first expedition in 2000, I noted that the present active beach was located shortly below a subrecent beach, now left for overgrowing and weathering (Mörner et al., 2004; Mörner, 2007a, 2007b). The abandoned beach was located about 20 cm higher than the present beach; indicating a fall in sea level which was likely to have occurred in the middle to end of the previous century. Local fishermen informed us that this lowering in sea level was recorded by them to have occurred in the 1970s. This invalidated all talk about an on-going rapidly rising sea level in the Maldives. The field evidence is overwhelming as illustrated by Figs. 1-4, demonstrating this late 20th century drop in sea level as registered in coastal morphology.
This investigation (Mörner, 2010a) includes the remarkable evidence from a group of trees. On the beach there are remains of numerous dead trees sticking out of the beach at low tide (Fig. 6). At my first visit, there were people taking it as evidence of a recent rise in sea level. I noted the horizontal roots 60-80 cm over the ground, which revealed that we were dealing with mangrove trees once covered by intertidal must just over the horizontal roots (Fig. 6b). The origin of the “drawn forest” was severe coastal erosion at the Sidar Cyclone in 2007, and by no means any sea level rise. The trees were telling the truth.
In Goa, we have a very complete record of sea level change during the last 500 years (Mörner, 2017b, 2019): a +60 cm beach from the 17th century, a sea level well below the present in the 18th century with buildings from about 1750 below the present sea level, and a 20 cm drop in sea level in 1955-1962 excellently recorded in shore morphology but also shown in the Mumbai tide gauge record (Mörner, 2010a, 2017b). In this paper I will examine the message from an old panting in the Archaeological Museum in Old Goa (Fig. 7).
The painting shows two stages in the evolution of the city; one graded to a high sea level (A) and one graded to a much lower sea level (B). Obviously we are dealing with the situation during the 17th century (A) and the 18th century (B) in perfect agreement with the observed and dated +60 cm high sea level in the 17th century and the sea level well below the present one in the 18th century (Mörner, 2017b). It is, of course, quite remarkable that this was so well captured in an ancient painting, probably dating to the mid 18th century (Fig. 7).
Fig. 7. Ancient painting of the City of Old Goa (Mörner, 2017b). It shows two stages of the city extension: Old Goa of the 17th century (A1) with city wall (A2) and abandoned harbour with ship wreaks (A3), and Old Goa of the 18th century with a new extension of buildings and the city wall (B1), a much lower sea shore (B2) and buildings along a new and lower shore level (B3, B4, B5). The painting was probably made in the mid 18th century. It gives evidence of two sea levels; a higher one in the 17th century and a lower one in the 18th century.
From the Fiji Islands, we have another quite complete record of the sea level changes during the last 500 years (Mörner, 2017c, 2019; Mörner and Matlack-Klein, 2017a, 2017b): a +70 cm level in the 17th century, a -70-100 cm in the 18th century, a +20-30 cm level in the early 19th century, a 20 cm drop in sea level in the late 20th century, and quite stable sea level conditions in the last 20-50 years. In this paper, I will return to biological criteria for the last 70 years.
In the mid to late 20th century sea level dropped by 10-20 cm and then remained constant up to the present as recorded by a dead and alive biomarkers of the mean high-tide level (Fig. 8), and the sea level forced growth of corals (Fig. 9).
Similar microatolls with a dead centre and presently laterally growing corals were found at several places on different island of the Yasawa Islands. It gives evidence of fully stable sea level conditions during the last 50 years. In an open letter to the Prime Minister of Fiji and the President of the COP23 conference, we urged him to listen to his own field evidence in the Fiji Islands, indicating no rise in sea level, and to be faithful to the message from the Fiji corals indicating full sea level stability in the last 50 years (Mörner and Matlack-Klein, 2017c).
Ouvéa Island in New Caledonia
In the Ouvéa Island in New Caledonia, I have another excellent record sea level changes in the last 500 years (Mörner, 2018a, 2019): an excellent +70 cm high sea level (obviously of the 17th century), a +20-40 cm level in the late 19th to early 20th century, a 20 cm drop in sea level in subrecent time, and stable sea level conditions in present time. The evidence of present day sea level stability is exceptionally well recorded in coastal morphology (Fig. 1 of Mörner, 2018a).
The reconstruction of past to present sea level changes is vital for meaningful predictions of changes likely to occur in the near future. There are many different ways of assessing the sea level changes, however (e.g. Mörner, 2004b, 2010b, 2018b, 2018c). Serious problems often occur with respect to psychology, preconceived ideas, uncertainties, lack of field data, etc. In the present sea level studies everything is based on painstaking field data in the Maldives, Bangladesh, Goa (India), the Fiji Island and New Caledonia (all documented and published separately). In this paper emphasis is placed on a skeleton, a vandalized tree, a mangrove forest, an ancient paining, corals and indisputable shore morphological evidence, all of which provide evidence-based facts of true sea level changes and where it is correct to claim that “trees and corals do not lie”.
The sea level changes documented in the five equatorial sites investigated (Mörner, 2019, 2018a, 2017c, 2017b) are so similar that they can easily be combined into one sea level curve (Fig. 10A) composed of 6 elements:
These sea level changes cannot be understood in terms of glacial eustasy (or thermal effects), only in terms of rotational eustasy (Mörner, 2017c, 2018a), a new observationally based theory fully presented in Mörner (2019).
The observed sea level changes in Northwest Europe (e.g. Mörner 2016) are shown in Fig. 10B. It shows a completely different – rather opposed – picture. Here we can observe the main climatic changes (Mörner, 2019).
The changes in Earth’s rate of rotation recorded in the expansion and contraction of Earth’s equatorial bulge at Grand Solar Minima and Maxim, respectively, are driven by external forces from planetary beat on the Sun, the Earth and the Earth-Moon system as further demonstrated elsewhere (Mörner, 2019, 2015b).
I am indebted to all professional colleagues taking part in the sea level expeditions and all the local people assisting us so very well. Founding by INQUA initiated the Maldives Sea Level Project as a part of the activity of the Commission on Sea Level Changes and Coastal Evolution (which I headed 1999-2003). No conflicts of interest are assured.